

Flanged Coupling Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

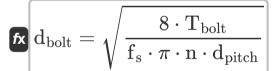
Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Flanged Coupling Formulas

Flanged Coupling

1) Diameter of bolt given maximum load that can be resisted by one bolt



 $extbf{d}_{ ext{bolt}} = \sqrt{rac{4 \cdot ext{W}}{\pi \cdot ext{f}_{ ext{s}}}}$

Open Calculator

ex
$$18.09432 \mathrm{mm} = \sqrt{rac{4 \cdot 3.6 \mathrm{kN}}{\pi \cdot 14 \mathrm{N/mm^2}}}$$

2) Diameter of bolt given torque resisted by n bolts

Open Calculator

ex
$$18.0827 \mathrm{mm} = \sqrt{\frac{8 \cdot 49 \mathrm{N^*m}}{14 \mathrm{N/mm^2} \cdot \pi \cdot 1.001 \cdot 27.23 \mathrm{mm}}}$$

3) Diameter of bolt given torque resisted by one bolt

 $oldsymbol{\mathrm{d}_{\mathrm{bolt}}} = \sqrt{rac{8 \cdot \mathrm{T_{bolt}}}{\mathrm{f_s} \cdot \pi \cdot \mathrm{d_{pitch}}}}$

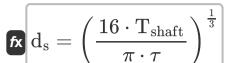
Open Calculator

ex
$$18.09174 \mathrm{mm} = \sqrt{\frac{8 \cdot 49 \mathrm{N^*m}}{14 \mathrm{N/mm^2} \cdot \pi \cdot 27.23 \mathrm{mm}}}$$

4) Diameter of bolt pitch circle given torque resisted by n bolts

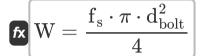
$$\mathbf{f}_{\mathbf{k}} d_{\mathrm{pitch}} = rac{8 \cdot T_{\mathrm{bolt}}}{f_{\mathrm{s}} \cdot \pi \cdot (d_{\mathrm{bolt}}^2) \cdot n}$$

Open Calculator 🗗


5) Diameter of bolt pitch circle given torque resisted by one bolt

$$extbf{d}_{ ext{pitch}} = rac{8 \cdot ext{T}_{ ext{bolt}}}{ ext{f}_{ ext{s}} \cdot \pi \cdot \left(ext{d}_{ ext{bolt}}^2
ight)}$$

Open Calculator 🗗


6) Diameter of shaft given torque transmitted by shaft

Open Calculator

$$ag{50.30796} ext{mm} = \left(rac{16\cdot 50 ext{N*m}}{\pi\cdot 2 ext{MPa}}
ight)^{rac{1}{3}}$$

7) Maximum amount of load that can be resisted by one bolt

Open Calculator

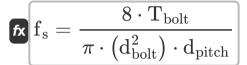
$$=$$
 $3.598281 \mathrm{kN} = rac{14 \mathrm{N/mm^2} \cdot \pi \cdot (18.09 \mathrm{mm})^2}{4}$

8) Number of bolts given torque resisted by n bolts

$$\mathbf{f}_{\mathbf{s}} = rac{8 \cdot T_{\mathrm{bolt}}}{\mathrm{f}_{\mathrm{s}} \cdot \pi \cdot \left(\mathrm{d}_{\mathrm{bolt}}^2\right) \cdot \mathrm{d}_{\mathrm{pitch}}}$$

Open Calculator

$$1.000192 = \frac{8 \cdot 49 \text{N*m}}{14 \text{N/mm}^2 \cdot \pi \cdot \left((18.09 \text{mm})^2 \right) \cdot 27.23 \text{mm}}$$



9) Shear stress in bolt given torque resisted by n bolts

 $\mathbf{f_s} = rac{8 \cdot T_{bolt}}{\mathbf{n} \cdot \pi \cdot \left(d_{bolt}^2
ight) \cdot d_{pitch}}$

Open Calculator

10) Shear stress in bolt given torque resisted by one bolt

Open Calculator

ex $14.00269 \mathrm{N/mm^2} = \frac{8 \cdot 49 \mathrm{N*m}}{\pi \cdot \left((18.09 \mathrm{mm})^2 \right) \cdot 27.23 \mathrm{mm}}$

11) Shear Stress in Bolt using Maximum Load that can be Resisted by One Bolt

$$\mathbf{f_s} = rac{4 \cdot \mathrm{W}}{\pi \cdot \left(\mathrm{d_{bolt}^2}
ight)}$$

Open Calculator 🚰

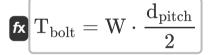
$$ag{14.00669 ext{N/mm}^2 = rac{4 \cdot 3.6 ext{kN}}{\pi \cdot \left(\left(18.09 ext{mm}
ight)^2
ight)}}$$

12) Shear stress in shaft given torque transmitted by shaft 🗗

 $au = rac{16 \cdot ext{T}_{ ext{shaft}}}{\pi \cdot \left(ext{d}_{ ext{s}}^3
ight)}$

Open Calculator

ex $2.00095 \text{MPa} = \frac{16 \cdot 50 \text{N*m}}{\pi \cdot \left((50.3 \text{mm})^3 \right)}$


13) Torque resisted by one bolt given shear stress in bolt

 $oldsymbol{ au_{
m bolt}} = rac{{
m f_s} \cdot \pi \cdot \left({
m d_{
m bolt}^2}
ight) \cdot {
m d_{
m pitch}}}{8}$

Open Calculator

 $= \frac{14 \text{N/mm}^2 \cdot \pi \cdot \left((18.09 \text{mm})^2 \right) \cdot 27.23 \text{mm}}{8}$

14) Torque Resisted by One Bolt using Load Resisted by One Bolt

Open Calculator

= 49.014N*m = 3.6kN $\cdot \frac{27.23 \text{mm}}{2}$

15) Torque transmitted by shaft 🛂

 $ag{T_{
m shaft}} = rac{\pi \cdot au \cdot {
m d}_{
m s}^3}{16}$

Open Calculator

$$= \frac{49.97627 \text{N*m} = \frac{\pi \cdot 2 \text{MPa} \cdot (50.3 \text{mm})^3}{16} }{16}$$

16) Total torque resisted by n number of bolts

 $oldsymbol{ au_{bolt}} egin{aligned} \mathbf{T_{bolt}} &= rac{\mathbf{n} \cdot \mathbf{f_s} \cdot \pi \cdot \left(\mathbf{d_{bolt}^2}
ight) \cdot \mathbf{d_{pitch}}}{8} \end{aligned}$

Open Calculator

$$= \frac{1.001 \cdot 14 \text{N/mm}^2 \cdot \pi \cdot \left((18.09 \text{mm})^2 \right) \cdot 27.23 \text{mm}}{8}$$

Variables Used

- **d**bolt Diameter of Bolt (Millimeter)
- dpitch Diameter of Bolt Pitch Circle (Millimeter)
- d_s Diameter of Shaft (Millimeter)
- **f**_s Shear Stress in Bolt (Newton per Square Millimeter)
- n Number of Bolts
- T_{bolt} Torque Resisted by Bolt (Newton Meter)
- T_{shaft} Torque Transmitted by Shaft (Newton Meter)
- W Load Resisted by One Bolt (Kilonewton)
- τ Shear Stress in Shaft (Megapascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²)
 Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Torque in Newton Meter (N*m)
 Torque Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Check other formula lists

- Deviation of Shear Stress produced in a Circular Shaft subjected to Torsion Formulas
- Expression for Strain Energy stored in a Body Due to Torsion Formulas
- Expression for Torque in terms of Polar Moment of Inertia
 Formulas
- Flanged Coupling Formulas
- Polar Modulus Formulas
 Torque Transmitted by a Hollow
 Circular Shaft Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/8/2024 | 8:19:03 AM UTC

Please leave your feedback here...

