
calculatoratoz.com

Wing-Tail Interaction Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Wing-Tail Interaction Formulas

Wing-Tail Interaction ©

1) Dynamic Pressure at Vertical Tail for given Vertical Tail Efficiency
$f \mathrm{f} \mathrm{Q}_{\mathrm{v}}=\eta_{\mathrm{v}} \cdot Q_{\mathrm{w}}$
ex $10.9956 \mathrm{~Pa}=16.66 \cdot 0.66 \mathrm{~Pa}$
2) Dynamic Pressure at Vertical Tail for given Yawing Moment Coefficient \longleftarrow
$f \mathrm{x} \mathrm{Q}_{\mathrm{v}}=\mathrm{C}_{\mathrm{n}} \cdot \mathrm{S} \cdot \mathrm{b} \cdot \frac{\mathrm{Q}_{\mathrm{w}}}{l_{\mathrm{v}} \cdot S_{\mathrm{v}} \cdot \mathrm{C}_{\mathrm{v}} \cdot(\beta+\sigma)}$
Open Calculator [
ex
$10.98496 \mathrm{~Pa}=1.4 \cdot 5.08 \mathrm{~m}^{2} \cdot 1.15 \mathrm{~m} \cdot \frac{0.66 \mathrm{~Pa}}{1.2 \mathrm{~m} \cdot 5 \mathrm{~m}^{2} \cdot 0.7 \mathrm{rad}^{-1} \cdot(0.05 \mathrm{rad}+0.067 \mathrm{rad})}$
3) Dynamic Pressure at Wing for given Vertical Tail Efficiency
$\boxed{\square}$
$f \mathrm{fx} \mathrm{Q}_{\mathrm{w}}=\frac{\mathrm{Q}_{\mathrm{v}}}{\eta_{\mathrm{v}}}$
Open Calculator
ex $0.660264 \mathrm{~Pa}=\frac{11 \mathrm{~Pa}}{16.66}$
4) Dynamic Pressure at Wing for given Yawing Moment Coefficient
$\boldsymbol{f x} \mathrm{Q}_{\mathrm{w}}=\boldsymbol{l}_{\mathrm{v}} \cdot \mathrm{S}_{\mathrm{v}} \cdot \mathrm{Q}_{\mathrm{v}} \cdot \mathrm{C}_{\mathrm{v}} \cdot \frac{\beta+\sigma}{\mathrm{S} \cdot \mathrm{b} \cdot \mathrm{C}_{\mathrm{n}}}$
Open Calculator
ex $0.660904 \mathrm{~Pa}=1.2 \mathrm{~m} \cdot 5 \mathrm{~m}^{2} \cdot 11 \mathrm{~Pa} \cdot 0.7 \mathrm{rad}^{-1} \cdot \frac{0.05 \mathrm{rad}+0.067 \mathrm{rad}}{5.08 \mathrm{~m}^{2} \cdot 1.15 \mathrm{~m} \cdot 1.4}$
5) Vertical Tail Dynamic Pressure for given Moment
$f \times \mathrm{Q}_{\mathrm{v}}=\frac{\mathrm{N}_{\mathrm{v}}}{\boldsymbol{l}_{\mathrm{v}} \cdot \mathrm{C}_{\mathrm{v}} \cdot(\beta+\sigma) \cdot \mathrm{S}_{\mathrm{v}}}$
ex $10.98901 \mathrm{~Pa}=\frac{5.4 \mathrm{~N}^{*} \mathrm{~m}}{1.2 \mathrm{~m} \cdot 0.7 \mathrm{rad}^{-1} \cdot(0.05 \mathrm{rad}+0.067 \mathrm{rad}) \cdot 5 \mathrm{~m}^{2}}$
6) Wing Area for given Moment Produced by Vertical Tail
$\mathrm{fx} \mathrm{S}=\frac{\mathrm{N}_{\mathrm{v}}}{\mathrm{C}_{\mathrm{n}} \cdot \mathrm{Q}_{\mathrm{w}} \cdot \mathrm{b}}$
Open Calculator [
ex $5.081875 \mathrm{~m}^{2}=\frac{5.4 \mathrm{~N}^{*} \mathrm{~m}}{1.4 \cdot 0.66 \mathrm{~Pa} \cdot 1.15 \mathrm{~m}}$
7) Wing Area for given Vertical Tail Volume Ratio
$f \mathrm{x} S=\boldsymbol{l}_{\mathrm{v}} \cdot \frac{\mathrm{S}_{\mathrm{v}}}{\mathrm{b} \cdot \mathrm{V}_{\mathrm{v}}}$
ex $5.11509 \mathrm{~m}^{2}=1.2 \mathrm{~m} \cdot \frac{5 \mathrm{~m}^{2}}{1.15 \mathrm{~m} \cdot 1.02}$
8) Wing Area for given Yawing Moment Coefficient
$f \mathrm{x} S=\boldsymbol{l}_{\mathrm{v}} \cdot \mathrm{S}_{\mathrm{v}} \cdot \mathrm{Q}_{\mathrm{v}} \cdot \mathrm{C}_{\mathrm{v}} \cdot \frac{\beta+\sigma}{\mathrm{C}_{\mathrm{n}} \cdot \mathrm{b} \cdot \mathrm{Q}_{\mathrm{w}}}$
Open Calculator
ex $5.086957 \mathrm{~m}^{2}=1.2 \mathrm{~m} \cdot 5 \mathrm{~m}^{2} \cdot 11 \mathrm{~Pa} \cdot 0.7 \mathrm{rad}^{-1} \cdot \frac{0.05 \mathrm{rad}+0.067 \mathrm{rad}}{1.4 \cdot 1.15 \mathrm{~m} \cdot 0.66 \mathrm{~Pa}}$
9) Wing Dynamic Pressure for given Yawing Moment Coefficient
$f \mathrm{f} \mathrm{Q}_{\mathrm{w}}=\frac{\mathrm{N}_{\mathrm{v}}}{\mathrm{C}_{\mathrm{n}} \cdot \mathrm{S} \cdot \mathrm{b}}$
Open Calculator ©
ex $0.660244 \mathrm{~Pa}=\frac{5.4 \mathrm{~N}^{*} \mathrm{~m}}{1.4 \cdot 5.08 \mathrm{~m}^{2} \cdot 1.15 \mathrm{~m}}$
10) Wingspan for given Vertical Tail Volume Ratio
$f \mathrm{fx}=\boldsymbol{l}_{\mathrm{v}} \cdot \frac{S_{\mathrm{v}}}{\mathrm{S} \cdot \mathrm{V}_{\mathrm{v}}}$
Open Calculator ©
ex $1.157943 \mathrm{~m}=1.2 \mathrm{~m} \cdot \frac{5 \mathrm{~m}^{2}}{5.08 \mathrm{~m}^{2} \cdot 1.02}$
11) Wingspan for given Yawing Moment Coefficient
$f \mathrm{fx}=\frac{\mathrm{N}_{\mathrm{v}}}{\mathrm{C}_{\mathrm{n}} \cdot \mathrm{S} \cdot \mathrm{Q}_{\mathrm{w}}}$
Open Calculator
ex $1.150424 \mathrm{~m}=\frac{5.4 \mathrm{~N}^{*} \mathrm{~m}}{1.4 \cdot 5.08 \mathrm{~m}^{2} \cdot 0.66 \mathrm{~Pa}}$
12) Wingspan for Yawing Moment Coefficient given Sideslip Angle and Sidewash Angle
$f \mathrm{fx}=\boldsymbol{l}_{\mathrm{v}} \cdot \mathrm{S}_{\mathrm{v}} \cdot \mathrm{Q}_{\mathrm{v}} \cdot \mathrm{C}_{\mathrm{v}} \cdot \frac{\beta+\sigma}{\mathrm{S} \cdot \mathrm{C}_{\mathrm{n}} \cdot \mathrm{Q}_{\mathrm{w}}}$
Open Calculator
ex $1.151575 \mathrm{~m}=1.2 \mathrm{~m} \cdot 5 \mathrm{~m}^{2} \cdot 11 \mathrm{~Pa} \cdot 0.7 \mathrm{rad}^{-1} \cdot \frac{0.05 \mathrm{rad}+0.067 \mathrm{rad}}{5.08 \mathrm{~m}^{2} \cdot 1.4 \cdot 0.66 \mathrm{~Pa}}$

Variables Used

- b Wingspan (Meter)
- \mathbf{C}_{n} Yawing Moment Coefficient
- $\mathbf{C}_{\mathbf{v}}$ Vertical Tail Lift Curve Slope (1 per Radian)
- $\mathbf{N}_{\mathbf{v}}$ Vertical Tail Moment (Newton Meter)
- $\mathbf{Q}_{\mathbf{V}}$ Vertical Tail Dynamic Pressure (Pascal)
- $\mathbf{Q}_{\mathbf{w}}$ Wing Dynamic Pressure (Pascal)
- S Reference Area (Square Meter)
- $\mathbf{S}_{\mathbf{v}}$ Vertical Tail Area (Square Meter)
- $\mathbf{V}_{\mathbf{v}}$ Vertical Tail Volume Ratio
- $\boldsymbol{\beta}$ Sideslip Angle (Radian)
- $\boldsymbol{\eta}_{\mathbf{v}}$ Vertical Tail Efficiency
- $\boldsymbol{\sigma}$ Sidewash Angle (Radian)
- $\boldsymbol{l}_{\mathbf{v}}$ Vertical Tail Moment Arm (Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Angle in Radian (rad)

Angle Unit Conversion

- Measurement: Moment of Force in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$)

Moment of Force Unit Conversion

- Measurement: Reciprocal Angle in 1 per Radian (rad^{-1})

Reciprocal Angle Unit Conversion

Check other formula lists

- Aerodynamic Parameters

Formulas

- Vertical Tail Contribution Formulas
- Wing-Tail Interaction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

