

Design of a Solid Bowl Centrifuge for Sludge Dewatering Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 33 Design of a Solid Bowl Centrifuge for Sludge Dewatering Formulas

Design of a Solid Bowl Centrifuge for Sludge Dewatering ☑

Centrifugal Acceleration Force

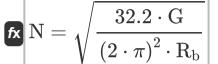
1) Bowl Radius given Centrifugal Acceleration Force

$$m R_b = rac{32.2 \cdot G}{\left(2 \cdot \pi \cdot N
ight)^2}$$

Open Calculator 🗗

ex
$$3 ext{ft} = rac{32.2 \cdot 2000.779 ext{lb*ft/s}^2}{(2 \cdot \pi \cdot 2.5 ext{rev/s})^2}$$

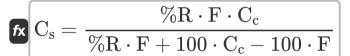
2) Centrifugal Acceleration Force in Centrifuge


$$\mathbf{G} = rac{\mathrm{R_b} \cdot \left(2 \cdot \pi \cdot \mathrm{N}
ight)^2}{32.2}$$

Open Calculator 🗗

$$ext{ex} 2000.779 ext{lb*ft/s}^2 = rac{3 ext{ft} \cdot (2 \cdot \pi \cdot 2.5 ext{rev/s})^2}{32.2}$$

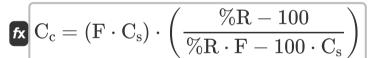
3) Rotational Speed of Centrifuge using Centrifugal Acceleration Force 🖒



Open Calculator 🗗

$$\mathbf{ex}$$
 $2.5 \mathrm{rev/s} = \sqrt{rac{32.2 \cdot 2000.779 \mathrm{lb*ft/s^2}}{\left(2 \cdot \pi
ight)^2 \cdot 3 \mathrm{ft}}}$

Percent Solids


4) Percent Cake Solids given Percent Solids Recovery

Open Calculator 🗗

$$extbf{ex} 25.03684 = rac{95.14 \cdot 5 \cdot 0.3}{95.14 \cdot 5 + 100 \cdot 0.3 - 100 \cdot 5}$$

5) Percent Centrate Solids given Percent Solids Recovery

$$\begin{array}{c} \textbf{ex} \ 0.300104 = (5 \cdot 25) \cdot \left(\frac{95.14 - 100}{95.14 \cdot 5 - 100 \cdot 25} \right) \end{array}$$

6) Percent Feed Solids given Percent Solids Recovery

- $100 \cdot C_a \cdot C_a$

Open Calculator

 $F = \frac{100 \cdot C_s \cdot C_c}{\% R \cdot C_c + 100 \cdot C_s - \% R \cdot C_s}$

7) Percent Solids Recovery to Determine Solids Capture

 $m \%R = 100 \cdot \left(rac{C_s}{F}
ight) \cdot \left(rac{F-C_c}{C_s-C_c}
ight)$

Open Calculator

 $95.1417 = 100 \cdot \left(\frac{25}{5}\right) \cdot \left(\frac{5-0.3}{25-0.3}\right)$

Polymer Feed Rate

8) Dry Sludge Feed given Polymer Feed Rate of Dry Polymer

fx $S = \frac{2000 \cdot P}{D_p}$

Open Calculator 🗗

 $ext{ex} \left[76.5 ext{lb/h} = rac{2000 \cdot 0.765 ext{lb/h}}{20}
ight]$

9) Percent Polymer Concentration given Polymer Feed Rate as Volumetric Flow Rate

 $m P = \left(rac{P}{8.34\cdot P_v\cdot G_p}
ight)$

Open Calculator

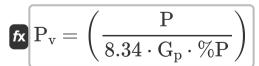
 $oxed{ex} 0.650195 = \left(rac{0.765 ext{lb/h}}{8.34 \cdot 7.82 ext{gal (UK)/hr} \cdot 1.8}
ight)$

10) Polymer Dosage when Polymer Feed Rate of Dry Polymer

 $\mathbf{E} \mathbf{D}_{\mathrm{p}} = rac{2000 \cdot \mathrm{P}}{\mathrm{S}}$

Open Calculator

 $\mathbf{ex} = \frac{2000 \cdot 0.765 \mathrm{lb/h}}{76.5 \mathrm{lb/h}}$


11) Polymer Feed Rate as Mass Flow Rate given Polymer Feed Rate as Volumetric Flow Rate

fx $P = (P_v \cdot 8.34 \cdot G_p \cdot \%P)$

Open Calculator 🗗

 $\mathbf{ex} = 0.76477 \text{lb/h} = (7.82 \text{gal (UK)/hr} \cdot 8.34 \cdot 1.8 \cdot 0.65)$

12) Polymer Feed Rate as Volumetric Flow Rate

Open Calculator 🖸

 $ext{ex} \left[7.82235 ext{gal (UK)/hr} = \left(rac{0.765 ext{lb/h}}{8.34 \cdot 1.8 \cdot 0.65}
ight)
ight]$

13) Polymer Feed Rate of Dry Polymer

 $P = \frac{D_p \cdot S}{2000}$

Open Calculator 🗗

2000

 $ext{ex} \ 0.765 ext{lb/h} = rac{20 \cdot 76.5 ext{lb/h}}{2000}$

14) Specific Gravity of Polymer given Polymer Feed Rate as Volumetric

Flow Rate

 $\mathbf{G}_{\mathrm{p}} = \left(rac{\mathrm{P}}{8.34\cdot\mathrm{P_{v}}\cdot\%\mathrm{P}}
ight)$

Open Calculator 🖸

ex $1.800541 = \left(\frac{0.765 \mathrm{lb/h}}{8.34 \cdot 7.82 \mathrm{gal} \ (\mathrm{UK}) / \mathrm{hr} \cdot 0.65} \right)$

Sludge Volume and Feed Rate

15) Dewatered Sludge or Cake Discharge Rate

fx $m [C_d = (S_f \cdot R)]$

Open Calculator 🚰

 $\texttt{ex} \ 27 \text{lb/h} = (45 \text{lb/h} \cdot 0.6)$

16) Digested Sludge using Sludge Feed Rate for Dewatering Facility

fx $D_s = (S_v \cdot T)$

Open Calculator

 $24 {
m m}^3/{
m s} = (2.4 {
m m}^3/{
m s} \cdot 10 {
m s})^{-1}$

17) Operation Time given Sludge Feed Rate for Dewatering Facility

 $\left| \mathbf{T} = \left(rac{\mathrm{D_s}}{\mathrm{S_v}}
ight)
ight|$

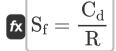
Open Calculator

 $\boxed{10\mathrm{s} = \left(\frac{24\mathrm{m}^3/\mathrm{s}}{2.4\mathrm{m}^3/\mathrm{s}}\right)}$

18) Percent Reduction in Sludge Volume

 $m / V = rac{V_i - V_o}{V_i}$

Open Calculator

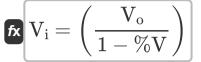

19) Sludge Feed Rate for Dewatering Facility

 $\mathbf{f}_{\mathbf{x}} \mathbf{S}_{\mathrm{v}} = \left(rac{\mathrm{D}_{\mathrm{s}}}{\mathrm{T}}
ight)$

Open Calculator 🚰

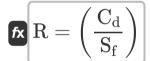
 $\left[2.4\mathrm{m}^3/\mathrm{s} = \left(rac{24\mathrm{m}^3/\mathrm{s}}{10\mathrm{s}}
ight)
ight]$

20) Sludge Feed Rate using Dewatered Sludge Discharge Rate


Open Calculator

21) Sludge Volume-in given Percent Reduction in Sludge Volume 🗗

Open Calculator


22) Sludge Volume-out given Percent Reduction in Sludge Volume 🗗

fx $V_{\rm o} = V_{\rm i} \cdot (1 - \%V)$

Open Calculator

 $22.008 \mathrm{m}^{_3} = 28 \mathrm{m}^{_3} \cdot (1 - 0.214)$

23) Solids Recovery given Dewatered Sludge Discharge Rate 🛂

Open Calculator

$\mathbf{ex} \ 0.6 = \left(\frac{27 \text{lb/h}}{45 \text{lb/h}} \right)$

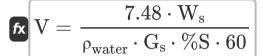
24) Percent Solids given Weight Flow Rate of Sludge Feed 🛂

$$m fx = rac{7.48 \cdot W_s}{V \cdot
ho_{water} \cdot G_s \cdot 60}$$

Open Calculator 2

$$= \frac{7.48 \cdot 3153.36 \text{lb/h}}{7 \text{gal (US)/min} \cdot 62.4 \text{lb/ft}^3 \cdot 2 \cdot 60}$$

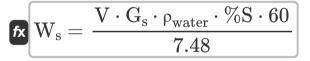
Weight Flow Rate of Sludge Feed



25) Specific Gravity of Sludge using Weight Flow Rate

fx $G_{
m s} = rac{7.48 \cdot W_{
m s}}{ V \cdot
ho_{
m water} \cdot \% S \cdot 60}$

Open Calculator


26) Volume Flow Rate of Sludge Feed using Weight Flow Rate

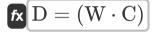
Open Calculator

ex 6.99998gal (US)/min = $\frac{7.48 \cdot 3153.36$ lb/h 62.4lb/ft³ · 2 · 0.45 · 60

27) Weight Flow Rate of Sludge Feed

Open Calculator 🗗

 $ext{ex} | 3153.369 ext{lb/h} = rac{7 ext{gal (US)/min} \cdot 2 \cdot 62.4 ext{lb/ft}^3 \cdot 0.45 \cdot 60}{7.48} |$


Wet Cake

28) Cake Density using Volume of Wet Cake 🗗

fx
$$ho_{
m c} = \left(rac{
m W_r}{
m V_w}
ight)$$

Open Calculator

29) Dry Cake Rate using Wet Cake Discharge Rate

 $(29.9971b/h = (54.54lb/h \cdot 0.55)$

$\left| \mathbf{C} \right| = \left(\frac{\mathrm{D}}{\mathrm{W}} \right)$

30) Percent Cake Solids using Wet Cake Discharge Rate

 $\left| 0.550055 = \left(rac{30 ext{lb/h}}{54.54 ext{lb/h}}
ight)
ight|$

31) Volume of Wet Cake

$$extbf{K} V_{
m w} = \left(rac{W_{
m r}}{
ho_c}
ight)$$

Open Calculator 2

Open Calculator 2

Open Calculator

ex $15 ext{ft}^3/ ext{hr} = \left(rac{60 ext{lb}/ ext{h}}{4 ext{lb}/ ext{ft}^3}
ight)$

© calculatoratoz.com. A softusvista inc. venture!

32) Wet Cake Discharge Rate

 $W = \left(\frac{D}{C}\right)$

Open Calculator 🗗

$$= 54.54545 lb/h = \left(\frac{30 lb/h}{0.55}\right)$$

33) Wet Cake Rate using Volume of Wet Cake

fx $W_{r} = (V_{w} \cdot \rho_{c})$

Open Calculator 🖸

$$extstyle extstyle ext$$

Variables Used

- %P Percent Polymer Concentration
- %R Percent Solids Recovery
- %S Percent Solids
- %V Volume Reduction
- C Cake Solids in Decimal
- C_c Centrate Solids in Percent
- C_d Cake Discharge Rate (Pound per Hour)
- Cs Cake Solids in Percent
- **D** Dry Cake Rate (Pound per Hour)
- D_p Polymer Dosage
- D_S Digested Sludge (Cubic Meter per Second)
- F Feed Solids in Percent
- G Centrifugal Acceleration Force (Pound Foot per Square Second)
- G_p Specific Gravity of Polymer
- G_s Specific Gravity of Sludge
- N Rotational Speed of Centrifuge (Revolution per Second)
- P Polymer Feed Rate (Pound per Hour)
- P_v Volumetric Polymer Feed Rate (Gallon (UK) per Hour)
- R Solid Recovery in Decimal
- R_b Bowl Radius (Foot)
- S Dry Sludge Feed (Pound per Hour)
- S_f Sludge Feed Rate (Pound per Hour)

- S_v Volumetric Sludge Feed Rate (Cubic Meter per Second)
- T Operation Time (Second)
- **V** Volume Flow Rate of Sludge Feed (Gallon (US) per Min)
- **V**_i Sludge Volume in (Cubic Meter)
- Vo Sludge Volume Out (Cubic Meter)
- V_w Volume of Wet Cake (Cubic Foot per Hour)
- W Wet Cake Discharge (Pound per Hour)
- W_r Wet Cake Rate (Pound per Hour)
- W_s Weight Flow Rate of Sludge Feed (Pound per Hour)
- ρ_c Cake Density (Pound per Cubic Foot)
- Pwater Water Density (Pound per Cubic Foot)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Foot (ft)
 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³)
 Volume Unit Conversion
- Measurement: Force in Pound Foot per Square Second (lb*ft/s²)
 Force Unit Conversion
- Measurement: Volumetric Flow Rate in Gallon (UK) per Hour (gal (UK)/hr), Cubic Meter per Second (m³/s), Gallon (US) per Min (gal (US)/min), Cubic Foot per Hour (ft³/hr)
 Volumetric Flow Rate Unit Conversion
- Measurement: Mass Flow Rate in Pound per Hour (lb/h)
 Mass Flow Rate Unit Conversion
- Measurement: Angular Velocity in Revolution per Second (rev/s)
 Angular Velocity Unit Conversion
- Measurement: Density in Pound per Cubic Foot (lb/ft³)
 Density Unit Conversion

Check other formula lists

- Design of a Chlorination System Formulas (7) for Wastewater Disinfection Formulas (
- Design of a Circular Settling Tank Population Forecast Method Formulas
- for Sludge Dewatering

- Estimating the Design Sewage Discharge Formulas
- Formulas C Design of a Solid Bowl Centrifuge • Sanitary System Sewer Design Formulas C

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/28/2024 | 9:37:06 AM UTC

Please leave your feedback here...

