

Flow in Open Channels Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Flow in Open Channels Formulas

Flow in Open Channels 🕑

1) Area of Flow for Circular Channel 🕑

fx
$$\mathbf{A} = \left(\mathbf{R}^2
ight) \cdot \left(heta - \left(rac{\sin(2 \cdot heta)}{2}
ight)
ight)$$

Open Calculator

$$\mathbf{x} \left[1.733345 \mathrm{m}^{_{2}} = \left((0.75 \mathrm{m})^{2} \right) \cdot \left(2.687 \mathrm{rad} - \left(\frac{\mathrm{sin}(2 \cdot 2.687 \mathrm{rad})}{2} \right) \right) \right]$$

2) Bazin's constant 🗹

fx
$$\mathbf{K} = \left(\sqrt{\mathbf{m}}\right) \cdot \left(\left(\frac{157.6}{\mathrm{C}}\right) - 1.81\right)$$

ex
$$0.531147 = \left(\sqrt{0.423m}\right) \cdot \left(\left(\frac{157.6}{60}\right) - 1.81\right)$$

3) Chezy's constant considering Bazin formula 🕑

Open Calculator

fx
$$C = \frac{157.6}{1.81 + \left(\frac{K}{\sqrt{m}}\right)}$$

ex $60.00518 = \frac{157.6}{1.81 + \left(\frac{0.531}{\sqrt{0.423m}}\right)}$

fx

4) Chezy's constant considering Kutter's formula 🕑

$$\overline{\mathrm{C}=rac{23+\left(rac{0.00155}{\mathrm{i}}
ight)+\left(rac{1}{\mathrm{n}}
ight)}{1+\left(23+\left(rac{0.00155}{\mathrm{i}}
ight)
ight)\cdot\left(rac{\mathrm{n}}{\sqrt{\mathrm{m}}}
ight)}}$$

$$\mathbf{ex} \ 60.72016 = \frac{23 + \left(\frac{0.00155}{0.005}\right) + \left(\frac{1}{0.0145}\right)}{1 + \left(23 + \left(\frac{0.00155}{0.005}\right)\right) \cdot \left(\frac{0.0145}{\sqrt{0.423\mathrm{m}}}\right)}$$

5) Chezy's constant considering Manning's formula 子

fx
$$\mathbf{C} = \left(rac{1}{n}
ight) \cdot \left(\mathbf{m}^{rac{1}{6}}
ight)$$

ex 59.75241 =
$$\left(\frac{1}{0.0145}\right) \cdot \left((0.423\mathrm{m})^{\frac{1}{6}}\right)$$

6) Chezy's constant considering velocity 🕑

fx
$$C = \frac{v}{\sqrt{m \cdot i}}$$

ex $60.01418 = \frac{2.76 \text{m/s}}{\sqrt{0.423 \text{m} \cdot 0.005}}$

Open Calculator

Open Calculator 🕑

Open Calculator

7) Critical depth considering flow in open channels 🕑

$$\begin{aligned} & \mathbf{\hat{k}} \quad \mathbf{h}_{c} = \left(\frac{q^{2}}{[g]}\right)^{\frac{1}{3}} & \text{Open Calculator } \mathbf{\hat{k}} \\ & \mathbf{\hat{k}}_{c} = \left(\frac{q^{2}}{[g]}\right)^{\frac{1}{3}} \\ & \mathbf{\hat{k}} \\ & \mathbf{\hat{k}}_{c} = \left(\frac{2}{3}\right) \cdot \mathbf{E}_{min} \\ & \mathbf{\hat{k}}_{c} = \left(\frac{2}{3}\right) \cdot \mathbf{E}_{min} \\ & \mathbf{\hat{k}} \\ & \mathbf{\hat{k}}_{c} = \left(\frac{2}{3}\right) \cdot \mathbf{E}_{min} \\ & \mathbf{\hat{k}} \\ & \mathbf{\hat{k}}_{c} = \left(\frac{2}{3}\right) \cdot \mathbf{\hat{k}}_{smin} \\ & \mathbf{\hat{k}} \\ & \mathbf{\hat{k}}_{c} = \frac{V_{c}^{2}}{[g]} \\ & \mathbf{\hat{k}}$$

10) Critical velocity considering flow in open channels 子

$$V_{c} = \sqrt{[g] \cdot h_{c}}$$

$$V_{c} = \sqrt{[g] \cdot h_{c}}$$

$$1.953148 \text{m/s} = \sqrt{[g] \cdot 0.389 \text{m}}$$

$$11) \text{ Discharge per unit width considering flow in open channels } \textbf{C}$$

$$q = \sqrt{(h_{c}^{3}) \cdot [g]}$$

$$12) \text{ Hydraulic mean depth considering Bazin formula } \textbf{C}$$

$$m = \left(\frac{K}{\left(\left(\frac{157.6}{C}\right) - 1.81\right)}\right)^{2}$$

$$13) \text{ Hydraulic mean depth considering Manning's formula } \textbf{C}$$

$$m = (C \cdot n)^{6}$$

$$0.433626 \text{m} = (60 \cdot 0.0145)^{6}$$

14) Hydraulic mean depth using Chezy's formula 🕑

$$fx m = \left(\frac{1}{i}\right) \cdot \left(\frac{v}{C}\right)^2$$

$$ex 0.4232m = \left(\frac{1}{0.005}\right) \cdot \left(\frac{2.76m/s}{60}\right)^2$$

$$Open Calculator C$$

15) Manning's coefficient or constant 🕑

fx
$$n = \left(rac{1}{C}
ight) \cdot m^{rac{1}{6}}$$

ex
$$0.01444 = \left(\frac{1}{60}\right) \cdot (0.423 \mathrm{m})^{\frac{1}{6}}$$

16) Minimum Specific Energy using Critical Depth 🕑

fx
$$\mathbf{E}_{\min} = \left(\frac{3}{2}\right) \cdot \mathbf{h}_{\mathrm{c}}$$

ex $0.5835\mathrm{m} = \left(\frac{3}{2}\right) \cdot 0.389\mathrm{m}$

17) Radius of Circular Channel using Wetted Perimeter 🕑

Open Calculator 🖸

Open Calculator 🖸

ex $4.0305m = 2 \cdot 0.75m \cdot 2.687rad$

Variables Used

- **A** Area of Flow of Circular Channel (Square Meter)
- C Chezy's Constant for Flow in Open Channel
- Emin Minimum Specific Energy for Open Channel Flow (Meter)
- **h**_c Critical Depth for Flow in Open Channel (*Meter*)
- i Slope of Bed of Open Channel
- K Bazin's Constant for Flow in Open Channel
- **m** Hydraulic Mean Depth for Open Channel (Meter)
- **n** Manning's Coefficient for Open Channel Flow
- P Wetted Perimeter of Circular Open Channel (Meter)
- **q** Discharge Per Unit Width in Open Channel (Square Meter per Second)
- R Radius of Circular Open Channel (Meter)
- V Flow Velocity in Open Channel (Meter per Second)
- V_c Critical Velocity for Flow in Open Channel (Meter per Second)
- **θ** Half Angle by Water Surface in Circular Channel (*Radian*)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second (m²/s)
 Kinematic Viscosity Unit Conversion

Check other formula lists

Flow in Open Channels
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/19/2024 | 5:19:55 AM UTC

Please leave your feedback here ...

