
calculatoratoz.com

Riveted Joints Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 36 Riveted Joints Formulas

Riveted Joints ©

Rivet Dimensions

1) Diagonal pitch
$\mathrm{f}_{\mathrm{x}} \mathrm{p}_{\mathrm{d}}=\frac{2 \cdot \mathrm{p}_{\mathrm{l}}+\mathrm{d}}{3}$
Open Calculator
ex $27.46667 \mathrm{~mm}=\frac{2 \cdot 32.2 \mathrm{~mm}+18 \mathrm{~mm}}{3}$2) Diameter of Rivet given Margin of Rivet
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{m}}{1.5}$
ex $18 \mathrm{~mm}=\frac{27 \mathrm{~mm}}{1.5}$
2) Diameter of Rivet given Pitch along Caulking Edge
$f \mathrm{fx}=\mathrm{p}_{\mathrm{c}}-14 \cdot\left(\frac{\left(\mathrm{~h}_{\mathrm{c}}\right)^{3}}{\mathrm{P}_{\mathrm{f}}}\right)^{\frac{1}{4}}$
ex $17.93051 \mathrm{~mm}=31.2 \mathrm{~mm}-14 \cdot\left(\frac{(14 \mathrm{~mm})^{3}}{3.4 \mathrm{~N} / \mathrm{mm}^{2}}\right)^{\frac{1}{4}}$
3) Diameter of rivets for lap joint
$f \mathrm{x}=\left(4 \cdot \frac{\mathrm{P}}{\pi \cdot \mathrm{n} \cdot \tau}\right)^{0.5}$
Open Calculator
ex $18.03839 \mathrm{~mm}=\left(4 \cdot \frac{46000 \mathrm{~N}}{\pi \cdot 3 \cdot 60 \mathrm{~N} / \mathrm{mm}^{2}}\right)^{0.5}$
4) Longitudinal pitch
$\mathrm{fx} \mathrm{p}_{\mathrm{l}}=\frac{3 \cdot \mathrm{p}_{\mathrm{d}}-\mathrm{d}}{2}$
Open Calculator ©
$\mathrm{ex} 32.25 \mathrm{~mm}=\frac{3 \cdot 27.5 \mathrm{~mm}-18 \mathrm{~mm}}{2}$
5) Margin of Rivet \subseteq
$\mathrm{fx} \mathrm{m}=1.5 \cdot \mathrm{~d}$

ex
 $27 \mathrm{~mm}=1.5 \cdot 18 \mathrm{~mm}$

7) Minimum transverse pitch as per ASME boiler code if ratio of p is to d is less than 4
$f \mathrm{f} \mathrm{p}_{\mathrm{t}}=1.75 \cdot \mathrm{~d}$
Open Calculator
ex $31.5 \mathrm{~mm}=1.75 \cdot 18 \mathrm{~mm}$
8) Minimum transverse pitch as per ASME boiler code if ratio of p to d is greater than 4 (SI)
$f \mathrm{f} \mathrm{p}_{\mathrm{t}}=1.75 \cdot \mathrm{~d}+.001 \cdot\left(\mathrm{p}_{\mathrm{l}}-\mathrm{d}\right)$
Open Calculator
ex $31.5142 \mathrm{~mm}=1.75 \cdot 18 \mathrm{~mm}+.001 \cdot(32.2 \mathrm{~mm}-18 \mathrm{~mm})$
9) Number of Rivets Per Pitch given Crushing Resistance of Plates
$\mathrm{fx} \mathrm{n}=\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{d} \cdot \mathrm{t} \cdot \sigma_{\mathrm{c}}}$
Open Calculator
ex $2.999688=\frac{53800 \mathrm{~N}}{18 \mathrm{~mm} \cdot 10.6 \mathrm{~mm} \cdot 94 \mathrm{~N} / \mathrm{mm}^{2}}$
10) Pitch along caulking edge
$f \mathbf{f} \mathrm{p}_{\mathrm{c}}=14 \cdot\left(\left(\frac{\left(\mathrm{~h}_{\mathrm{c}}\right)^{3}}{\mathrm{P}_{\mathrm{f}}}\right)^{\frac{1}{4}}\right)+\mathrm{d}$
ex $31.26949 \mathrm{~mm}=14 \cdot\left(\left(\frac{(14 \mathrm{~mm})^{3}}{3.4 \mathrm{~N} / \mathrm{mm}^{2}}\right)^{\frac{1}{4}}\right)+18 \mathrm{~mm}$
11) Pitch of Rivet
$f \mathrm{f} p=3 \cdot \mathrm{~d}$
Open Calculator
ex $54 \mathrm{~mm}=3 \cdot 18 \mathrm{~mm}$
12) Pitch of Rivets given Tensile Resistance of Plate between two Rivets U
$f x p=\left(\frac{P_{t}}{t \cdot \sigma_{t}}\right)+d$
Open Calculator
ex $54.03774 \mathrm{~mm}=\left(\frac{28650 \mathrm{~N}}{10.6 \mathrm{~mm} \cdot 75 \mathrm{~N} / \mathrm{mm}^{2}}\right)+18 \mathrm{~mm}$
13) Rivet Diameter given Thickness of Plate
$\mathrm{fx} \mathrm{d}=0.2 \cdot \sqrt{\mathrm{t}}$
Open Calculator
ex $20.59126 \mathrm{~mm}=0.2 \cdot \sqrt{10.6 \mathrm{~mm}}$
14) Transverse pitch
$f \mathrm{x} \mathrm{p}_{\mathrm{t}}=\sqrt{\left(\frac{2 \cdot p_{\mathrm{l}}+\mathrm{d}}{3}\right)^{2}-\left(\frac{p_{l}}{2}\right)^{2}}$
$\mathrm{ex} 22.25326 \mathrm{~mm}=\sqrt{\left(\frac{2 \cdot 32.2 \mathrm{~mm}+18 \mathrm{~mm}}{3}\right)^{2}-\left(\frac{32.2 \mathrm{~mm}}{2}\right)^{2}}$
15) Transverse Pitch for Zig-Zag riveting
$f \mathrm{f} \mathrm{p}_{\mathrm{t}}=0.6 \cdot \mathrm{p}$
$32.4 \mathrm{~mm}=0.6 \cdot 54 \mathrm{~mm}$
16) Transverse Pitch of Rivet Chain Riveting
$f \mathrm{f} \mathrm{p}_{\mathrm{t}}=0.8 \cdot \mathrm{p}$
ex $43.2 \mathrm{~mm}=0.8 \cdot 54 \mathrm{~mm}$

Rivet Shank Dimensions 〔

17) Length of Rivet Shank
$f \mathbf{x}=\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)+\mathrm{a}$
ex $38 \mathrm{~mm}=(10.5 \mathrm{~mm}+12.5 \mathrm{~mm})+15 \mathrm{~mm}$
18) Length of Shank Portion necessary to form Closing Head
$f \mathrm{fx}=\mathrm{l}-\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
ex $15 \mathrm{~mm}=38 \mathrm{~mm}-(10.5 \mathrm{~mm}+12.5 \mathrm{~mm})$
19) Shank Diameter of Rivet given Crushing Resistance of Plates $\boxed{\Omega}$
$f \mathrm{fx}=\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{n} \cdot \mathrm{t} \cdot \sigma_{\mathrm{c}}}$
Open Calculator
ex $17.99813 \mathrm{~mm}=\frac{53800 \mathrm{~N}}{3 \cdot 10.6 \mathrm{~mm} \cdot 94 \mathrm{~N} / \mathrm{mm}^{2}}$
20) Shank Diameter of Rivet given Pitch of Rivet $\sqrt{\boxed{ }}$
$f \mathrm{f} d=\frac{\mathrm{p}}{3}$
Open Calculator
ex $18 \mathrm{~mm}=\frac{54 \mathrm{~mm}}{3}$
21) Shank diameter of Rivet subjected to double shear given Shear resistance of Rivet per Pitch
$f_{\mathrm{x}} \mathrm{d}=\sqrt{2 \cdot \frac{\mathrm{p}_{\mathrm{s}}}{\pi \cdot \tau}}$
ex $17.9893 \mathrm{~mm}=\sqrt{2 \cdot \frac{30500 \mathrm{~N}}{\pi \cdot 60 \mathrm{~N} / \mathrm{mm}^{2}}}$

Stresses and Resistances ©

22) Crushing Resistance of Plates per Pitch Length
$f \mathrm{f} \quad \mathrm{P}_{\mathrm{c}}=\mathrm{d} \cdot \mathrm{n} \cdot \mathrm{t} \cdot \sigma_{\mathrm{c}}$
Open Calculator
ex $53805.6 \mathrm{~N}=18 \mathrm{~mm} \cdot 3 \cdot 10.6 \mathrm{~mm} \cdot 94 \mathrm{~N} / \mathrm{mm}^{2}$
23) Permissible Compressive Stress of Plate Material given Crushing Resistance of Plates
$f \mathrm{x} \sigma_{\mathrm{c}}=\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{d} \cdot \mathrm{n} \cdot \mathrm{t}}$
Open Calculator
ex $93.99022 \mathrm{~N} / \mathrm{mm}^{2}=\frac{53800 \mathrm{~N}}{18 \mathrm{~mm} \cdot 3 \cdot 10.6 \mathrm{~mm}}$
24) Permissible Shear Stress for Rivet for Single Shear
$\mathrm{fx} \tau=\frac{\mathrm{p}_{\mathrm{s}}}{\left(\frac{\pi}{4}\right) \cdot \mathrm{n} \cdot \mathrm{d}^{2}}$
Open Calculator
ex $39.95248 \mathrm{~N} / \mathrm{mm}^{2}=\frac{30500 \mathrm{~N}}{\left(\frac{\pi}{4}\right) \cdot 3 \cdot(18 \mathrm{~mm})^{2}}$
25) Permissible Shear Stress for Rivet given Shear Resistance of Rivet Per Pitch Length
$\mathrm{fx} \tau=\frac{\mathrm{P}_{\mathrm{s}}}{\left(\frac{\pi}{4}\right) \cdot \mathrm{d}^{2}}$

$$
\text { ex } 119.8574 \mathrm{~N} / \mathrm{mm}^{2}=\frac{30500 \mathrm{~N}}{\left(\frac{\pi}{4}\right) \cdot(18 \mathrm{~mm})^{2}}
$$

26) Permissible Tensile Stress of Plate given Tensile Resistance of Plate between two Rivets
$\mathrm{fx}_{\mathrm{x}} \sigma_{\mathrm{t}}=\frac{\mathrm{P}_{\mathrm{t}}}{(\mathrm{p}-\mathrm{d}) \cdot \mathrm{t}_{1}}$
Open Calculator
ex $75.79365 \mathrm{~N} / \mathrm{mm}^{2}=\frac{28650 \mathrm{~N}}{(54 \mathrm{~mm}-18 \mathrm{~mm}) \cdot 10.5 \mathrm{~mm}}$
27) Shear Resistance of Rivet per Pitch Length
$f \mathrm{x} \mathrm{p}_{\mathrm{s}}=\left(\frac{\pi}{4}\right) \cdot \mathrm{d}^{2} \cdot \tau$
Open Calculator
ex $15268.14 \mathrm{~N}=\left(\frac{\pi}{4}\right) \cdot(18 \mathrm{~mm})^{2} \cdot 60 \mathrm{~N} / \mathrm{mm}^{2}$
28) Shear Resistance of Rivet Per Pitch Length for Double Shear
$\mathrm{fx}_{\mathrm{x}} \mathrm{p}_{\mathrm{s}}=2 \cdot\left(\frac{\pi}{4}\right) \cdot \mathrm{d}^{2} \cdot \tau \cdot \mathrm{n}$
Open Calculator
ex $91608.84 \mathrm{~N}=2 \cdot\left(\frac{\pi}{4}\right) \cdot(18 \mathrm{~mm})^{2} \cdot 60 \mathrm{~N} / \mathrm{mm}^{2} \cdot 3$
29) Shear Resistance of Rivet Per Pitch Length for Single Shear
$f \mathrm{x} \mathrm{p}_{\mathrm{s}}=\left(\frac{\pi}{4}\right) \cdot \mathrm{d}^{2} \cdot \tau \cdot \mathrm{n}$
Open Calculator
ex $45804.42 \mathrm{~N}=\left(\frac{\pi}{4}\right) \cdot(18 \mathrm{~mm})^{2} \cdot 60 \mathrm{~N} / \mathrm{mm}^{2} \cdot 3$
30) Tensile Resistance of Plate between two Rivets
$f_{\mathrm{x}} \mathrm{P}_{\mathrm{t}}=(\mathrm{p}-\mathrm{d}) \cdot \mathrm{t} \cdot \sigma_{\mathrm{t}}$
Open Calculator
ex $28620 \mathrm{~N}=(54 \mathrm{~mm}-18 \mathrm{~mm}) \cdot 10.6 \mathrm{~mm} \cdot 75 \mathrm{~N} / \mathrm{mm}^{2}$

Thickness of Plates

31) Thickness of plate 1 given Length of Rivet Shank
$\mathrm{fx}_{\mathrm{x}} \mathrm{t}_{1}=1-\left(\mathrm{a}+\mathrm{t}_{2}\right)$
Open Calculator
ex $10.5 \mathrm{~mm}=38 \mathrm{~mm}-(15 \mathrm{~mm}+12.5 \mathrm{~mm})$
32) Thickness of Plate 2 given Length of Rivet Shank
$\mathrm{fx}_{\mathrm{x}} \mathrm{t}_{2}=1-\left(\mathrm{t}_{1}+\mathrm{a}\right)$
ex $12.5 \mathrm{~mm}=38 \mathrm{~mm}-(10.5 \mathrm{~mm}+15 \mathrm{~mm})$
33) Thickness of Plate given Tensile Resistance of Plate between two Rivets
$\mathrm{f} \times \mathrm{t}=\frac{\mathrm{P}_{\mathrm{t}}}{(\mathrm{p}-\mathrm{d}) \cdot \sigma_{\mathrm{t}}}$
Open Calculator

$$
\text { ex } 10.61111 \mathrm{~mm}=\frac{28650 \mathrm{~N}}{(54 \mathrm{~mm}-18 \mathrm{~mm}) \cdot 75 \mathrm{~N} / \mathrm{mm}^{2}}
$$

34) Thickness of plate of pressure vessel with circumferential joint

$$
\mathrm{fx} t=\frac{\mathrm{P}_{\mathrm{f}} \cdot \mathrm{D}}{4 \cdot \eta \cdot \sigma_{\mathrm{h}}}
$$

Open Calculator
ex $10.64348 \mathrm{~mm}=\frac{3.4 \mathrm{~N} / \mathrm{mm}^{2} \cdot 1080 \mathrm{~mm}}{4 \cdot 0.75 \cdot 115 \mathrm{~N} / \mathrm{mm}^{2}}$
35) Thickness of plate of pressure vessel with longitudinal joint
$f \mathbf{f} t=\frac{P_{f} \cdot D}{2 \cdot \eta \cdot \sigma_{h}}$
Open Calculator
ex $21.28696 \mathrm{~mm}=\frac{3.4 \mathrm{~N} / \mathrm{mm}^{2} \cdot 1080 \mathrm{~mm}}{2 \cdot 0.75 \cdot 115 \mathrm{~N} / \mathrm{mm}^{2}}$

36) Thickness of Plates given Crushing Resistance \longleftarrow

Variables Used

- a Length of Shank Portion for Closing Head (Millimeter)
- d Diameter of Rivet (Millimeter)
- D Inner diameter of riveted pressure vessel (Millimeter)
- $\mathbf{h}_{\mathbf{c}}$ Riveted Joint Cover Plate Thickness (Millimeter)
- I Length of Rivet Shank (Millimeter)
- m Margin of Rivet (Millimeter)
- \mathbf{n} Rivets Per Pitch
- p Pitch of Rivet (Millimeter)
- P Tensile force on riveted plates (Newton)
- $\mathbf{P c}_{\mathbf{c}}$ Pitch along Caulking Edge (Millimeter)
- $\mathbf{P}_{\mathbf{c}}$ Crushing Resistance of Riveted Plate per Pitch (Newton)
- $\mathbf{P}_{\mathbf{d}}$ Diagonal Pitch of Rivet Joint (Millimeter)
- \mathbf{P}_{f} Intensity of Fluid Pressure (Newton per Square Millimeter)
- $\mathbf{P I}_{\mathbf{I}}$ Longitudinal Pitch of Rivet Joint (Millimeter)
- $\mathbf{P}_{\mathbf{s}}$ Shear Resistance of Rivet per Pitch Length (Newton)
- $\mathbf{p}_{\mathbf{t}}$ Transverse Pitch of Rivet (Millimeter)
- $\mathbf{P}_{\mathbf{t}}$ Tensile Resistance of Plate Per Rivet Pitch (Newton)
- t Thickness of Plate of Riveted joint (Millimeter)
- \mathbf{t}_{1} Thickness of Plate 1 of Riveted Joint (Millimeter)
- $\mathbf{t}_{\mathbf{2}}$ Thickness of Plate 2 of Riveted Joint (Millimeter)
- $\boldsymbol{\eta}$ Riveted joint efficiency
- $\boldsymbol{\sigma}_{\mathbf{c}}$ Permissible Compressive Stress of Riveted Plate (Newton per Square Millimeter)
- σ_{h} Circumferential Hoop Stress in Riveted Vessel (Newton per Square Millimeter)
- $\sigma_{\mathbf{t}}$ Tensile Stress in Riveted Plate (Newton per Square Millimeter)
- т Permissible Shear Stress for Rivet (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Pressure in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Pressure Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas
- Retaining Rings and Circlips Formulas
- Riveted Joints Formulas
- Seals Formulas
- Welded Joints Formulas \mathcal{G}

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

