AC Bridge Circuits Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 24 AC Bridge Circuits Formulas

AC Bridge Circuits ©

Anderson Bridge

1) Capacitor Current in Anderson Bridge
$f \mathbf{f x} \mathrm{I}_{\mathrm{c}(\mathrm{ab})}=\mathrm{I}_{1(\mathrm{ab})} \cdot \omega \cdot \mathrm{C}_{(\mathrm{ab})} \cdot \mathrm{R}_{3(\mathrm{ab})}$
Open Calculator
ex $2.436 \mathrm{~A}=0.58 \mathrm{~A} \cdot 200 \mathrm{rad} / \mathrm{s} \cdot 420 \mu \mathrm{~F} \cdot 50 \Omega$
2) Unknown Inductance in Anderson Bridge
fx
Open Calculator
$\mathrm{L}_{1(\mathrm{ab})}=\mathrm{C}_{(\mathrm{ab})} \cdot\left(\frac{\mathrm{R}_{3(\mathrm{ab})}}{\mathrm{R}_{4(\mathrm{ab})}}\right) \cdot\left(\left(\mathrm{r}_{1(\mathrm{ab})} \cdot\left(\mathrm{R}_{4(\mathrm{ab})}+\mathrm{R}_{3(\mathrm{ab})}\right)\right)+\left(\mathrm{R}_{2(\mathrm{ab})} \cdot \mathrm{R}_{4(\mathrm{ab})}\right)\right)$
ex $546 \mathrm{mH}=420 \mu \mathrm{~F} \cdot\left(\frac{50 \Omega}{150 \Omega}\right) \cdot((4.5 \Omega \cdot(150 \Omega+50 \Omega))+(20 \Omega \cdot 150 \Omega))$
3) Unknown Resistance in Anderson Bridge
$f \mathbf{f} \mathrm{R}_{1(\mathrm{ab})}=\left(\frac{\mathrm{R}_{2(\mathrm{ab})} \cdot \mathrm{R}_{3(\mathrm{ab})}}{\mathrm{R}_{4(\mathrm{ab})}}\right)-\mathrm{r}_{1(\mathrm{ab})}$
Open Calculator
ex $2.166667 \Omega=\left(\frac{20 \Omega \cdot 50 \Omega}{150 \Omega}\right)-4.5 \Omega$
De Sauty Bridge ©
4) Dissipation Factor of Known Capacitor in De Sauty Bridge
$\mathrm{fx} \mathrm{D}_{2(\mathrm{dsb})}=\omega \cdot \mathrm{C}_{2(\mathrm{dsb})} \cdot \mathrm{r}_{2(\mathrm{dsb})}$
ex $0.5344=200 \mathrm{rad} / \mathrm{s} \cdot 167 \mu \mathrm{~F} \cdot 16 \Omega$
5) Dissipation Factor of Unknown Capacitor in De Sauty Bridge
$\mathrm{fx} \mathrm{D}_{1(\mathrm{dsb})}=\omega \cdot \mathrm{C}_{1(\mathrm{dsb})} \cdot \mathrm{r}_{1(\mathrm{dsb})}$
ex $0.729106=200 \mathrm{rad} / \mathrm{s} \cdot 191.87 \mu \mathrm{~F} \cdot 19 \Omega$
6) Unknown Capacitance in De Sauty Bridge
$f \mathrm{f} \mathrm{C}_{1(\mathrm{dsb})}=\mathrm{C}_{2(\mathrm{dsb})} \cdot\left(\frac{\mathrm{R}_{4(\mathrm{dsb})}}{\mathrm{R}_{3(\mathrm{dsb})}}\right)$
Open Calculator
ex $191.8723 \mu \mathrm{~F}=167 \mu \mathrm{~F} \cdot\left(\frac{54 \Omega}{47 \Omega}\right)$

Hay Bridge [

7) Quality Factor of Hay Bridge using Capacitance
$f_{x} \mathrm{Q}_{\text {(hay) }}=\frac{1}{\mathrm{C}_{4(\text { hay })} \cdot \mathrm{R}_{4 \text { (hay) }} \cdot \omega}$
Open Calculator
ex $0.784929=\frac{1}{260 \mu \mathrm{~F} \cdot 24.5 \Omega \cdot 200 \mathrm{rad} / \mathrm{s}}$
8) Unknown Inductance in Hay Bridge
$f \times L_{1 \text { (hay) }}=\frac{\mathrm{R}_{2 \text { (hay) }} \cdot \mathrm{R}_{3 \text { (hay) }} \cdot \mathrm{C}_{4 \text { (hay) }}}{1+\omega^{2} \cdot \mathrm{C}_{4 \text { (hay) }}^{2} \cdot R_{4(\text { hay })}^{2}}$
ex $109.4288 \mathrm{mH}=\frac{32 \Omega \cdot 34.5 \Omega \cdot 260 \mu \mathrm{~F}}{1+(200 \mathrm{rad} / \mathrm{s})^{2} \cdot(260 \mu \mathrm{~F})^{2} \cdot(24.5 \Omega)^{2}}$
9) Unknown Resistance of Hay Bridge
$f \times R_{1 \text { (hay) }}=\frac{\omega^{2} \cdot \mathrm{R}_{2 \text { (hay) }} \cdot \mathrm{R}_{3 \text { (hay) }} \cdot \mathrm{R}_{4 \text { (hay) }} \cdot \mathrm{C}_{4 \text { (hay) }}^{2}}{1+\left(\omega^{2} \cdot \mathrm{R}_{4 \text { (hay) }}^{2} \cdot \mathrm{C}_{4 \text { (hay) }}^{2}\right)}$
ex $27.88245 \Omega=\frac{(200 \mathrm{rad} / \mathrm{s})^{2} \cdot 32 \Omega \cdot 34.5 \Omega \cdot 24.5 \Omega \cdot(260 \mu \mathrm{~F})^{2}}{1+\left((200 \mathrm{rad} / \mathrm{s})^{2} \cdot(24.5 \Omega)^{2} \cdot(260 \mu \mathrm{~F})^{2}\right)}$

Maxwell Bridge

10) Quality Factor of Maxwell Inductance-Capacitance Bridge
$f \mathrm{fx} \mathrm{Q}_{(\max)}=\frac{\omega \cdot \mathrm{L}_{1(\max)}}{\mathrm{R}_{\mathrm{eff}(\max)}}$
Open Calculator
ex $0.501092=\frac{200 \mathrm{rad} / \mathrm{s} \cdot 32.571 \mathrm{mH}}{13 \Omega}$
11) Unknown Inductance in Maxwell Inductance Bridge
$f x L_{1(\max)}=\left(\frac{\mathrm{R}_{3(\max)}}{\mathrm{R}_{4(\max)}}\right) \cdot \mathrm{L}_{2(\max)}$
ex $32.57143 \mathrm{mH}=\left(\frac{12 \Omega}{14 \Omega}\right) \cdot 38 \mathrm{mH}$
12) Unknown Resistance in Maxwell Inductance Bridge
$f \mathrm{fx} \mathrm{R}_{1(\max)}=\left(\frac{\mathrm{R}_{3(\max)}}{\mathrm{R}_{4(\max)}}\right) \cdot\left(\mathrm{R}_{2(\max)}+\mathrm{r}_{2(\max)}\right)$
ex $110.5714 \Omega=\left(\frac{12 \Omega}{14 \Omega}\right) \cdot(29 \Omega+100 \Omega)$

Schering Bridge §

13) Capacitance due to Space between Specimen and Dielectric
$f \mathrm{f} \mathrm{C}_{\mathrm{o}}=\frac{\mathrm{C} \cdot \mathrm{C}_{\mathrm{s}}}{\mathrm{C}-\mathrm{C}_{\mathrm{s}}}$
ex $0.55 \mu \mathrm{~F}=\frac{5.5 \mu \mathrm{~F} \cdot 0.5 \mu \mathrm{~F}}{5.5 \mu \mathrm{~F}-0.5 \mu \mathrm{~F}}$
14) Capacitance of Specimen
\angle
$f \mathrm{fx} \mathrm{C}_{\mathrm{s}}=\frac{\varepsilon r \cdot(\mathrm{~A} \cdot[\text { Permitivity-vacuum }])}{\mathrm{d}}$
ex $1.8 \mathrm{E}^{\wedge}-5 \mu \mathrm{~F}=\frac{1.5 \cdot\left(13 \mathrm{~m}^{2} \cdot[\text { Permitivity-vacuum }]\right)}{9.5 \mathrm{~m}}$
15) Capacitance with Specimen as Dielectric
$f \mathrm{fx} \mathrm{C}_{\mathrm{s}}=\frac{\mathrm{C} \cdot \mathrm{C}_{\mathrm{o}}}{\mathrm{C}-\mathrm{C}_{\mathrm{o}}}$
Open Calculator
ex $-19.25 \mu \mathrm{~F}=\frac{5.5 \mu \mathrm{~F} \cdot 7.7 \mu \mathrm{~F}}{5.5 \mu \mathrm{~F}-7.7 \mu \mathrm{~F}}$
16) Dissipation Factor in Schering Bridge
$\mathrm{fx} \mathrm{D}_{1(\mathrm{sb})}=\omega \cdot \mathrm{C}_{4(\mathrm{sb})} \cdot \mathrm{R}_{4(\mathrm{sb})}$
Open Calculator
ex $0.6104=200 \mathrm{rad} / \mathrm{s} \cdot 109 \mu \mathrm{~F} \cdot 28 \Omega$
17) Effective area of Electrode
$f \mathbf{x} \mathrm{~A}=\mathrm{C}_{\mathrm{sp}} \cdot \frac{\mathrm{d}}{\varepsilon \mathrm{r} \cdot[\text { Permitivity-vacuum }]}$
ex $13=0.000109 \mu \mathrm{~F} \cdot \frac{9.5}{9.000435 \cdot[\text { Permitivity-vacuum }]}$

18) Effective Capacitance of Cs and Co \preceq

$f x=\frac{C_{s} \cdot C_{o}}{C_{s}+C_{o}}$
ex $0.469512 \mu \mathrm{~F}=\frac{0.5 \mu \mathrm{~F} \cdot 7.7 \mu \mathrm{~F}}{0.5 \mu \mathrm{~F}+7.7 \mu \mathrm{~F}}$
19) Parallel Plate Relative Permeability
$f \mathrm{x} \varepsilon \mathrm{r}=\frac{\mathrm{C}_{\mathrm{s}} \cdot \mathrm{d}}{\mathrm{A} \cdot[\text { Permitivity-vacuum }]}$
ex $41286.4=\frac{0.5 \mu \mathrm{~F} \cdot 9.5 \mathrm{~m}}{13 \mathrm{~m}^{2} \cdot[\text { Permitivity-vacuum }]}$
20) Unknown Capacitance in Schering Bridge
$f \mathbf{x} \mathrm{C}_{1(\mathrm{sb})}=\left(\frac{\mathrm{R}_{4(\mathrm{sb})}}{\mathrm{R}_{3(\mathrm{sb})}}\right) \cdot \mathrm{C}_{2(\mathrm{sb})}$
ex $183.3548 \mu \mathrm{~F}=\left(\frac{28 \Omega}{31 \Omega}\right) \cdot 203 \mu \mathrm{~F}$
21) Unknown Resistance in Schering Bridge
$f \mathrm{x} \mathrm{r}_{1(\mathrm{sb})}=\left(\frac{\mathrm{C}_{4(\mathrm{sb})}}{\mathrm{C}_{2(\mathrm{sb})}}\right) \cdot \mathrm{R}_{3(\mathrm{sb})}$
ex $16.64532 \Omega=\left(\frac{109 \mu \mathrm{~F}}{203 \mu \mathrm{~F}}\right) \cdot 31 \Omega$

Wien Bridge

22) Angular Frequency in Wien's Bridge
$f \times \omega_{(\text {wein })}=\frac{1}{\sqrt{\mathrm{R}_{1(\text { wein })} \cdot \mathrm{R}_{2(\text { wein })} \cdot \mathrm{C}_{1(\text { wein })} \cdot \mathrm{C}_{2(\text { wein })}}}$
ex $138.5107 \mathrm{rad} / \mathrm{s}=\frac{1}{\sqrt{27 \Omega \cdot 26 \Omega \cdot 270 \mu \mathrm{~F} \cdot 275 \mu \mathrm{~F}}}$
23) Resistance Ratio in Wien Bridge
$f \mathrm{fx} \mathrm{R}_{(\text {wein })}=\left(\frac{\mathrm{R}_{2(\text { wein })}}{\mathrm{R}_{1(\text { wein })}}\right)+\left(\frac{\mathrm{C}_{1 \text { (wein) }}}{\mathrm{C}_{2(\text { wein })}}\right)$
ex $1.944781=\left(\frac{26 \Omega}{27 \Omega}\right)+\left(\frac{270 \mu \mathrm{~F}}{275 \mu \mathrm{~F}}\right)$
24) Unknown Frequency in Wien Bridge
$f \mathbf{f} f_{(\text {wein })}=\frac{1}{2 \cdot \pi \cdot\left(\sqrt{\mathrm{R}_{1(\text { wein })} \cdot \mathrm{R}_{2(\text { wein })} \cdot \mathrm{C}_{1(\text { wein })} \cdot \mathrm{C}_{2(\text { wein })}}\right)}$
Open Calculator
ex $22.04466 \mathrm{~Hz}=\frac{1}{2 \cdot \pi \cdot(\sqrt{27 \Omega \cdot 26 \Omega \cdot 270 \mu \mathrm{~F} \cdot 275 \mu \mathrm{~F}})}$

Variables Used

- A Effective Area of Electrode (Square Meter)
- A Effective Area of Electrode Op
- C Effective Capacitance (Microfarad)
- $\mathrm{C}_{(\mathrm{ab})}$ Capacitance in Anderson Bridge (Microfarad)
- $\mathrm{C}_{1 \text { (dsb) }}$ Unknown Capacitance in De Sauty Bridge (Microfarad)
- $\mathrm{C}_{1(\mathrm{sb})}$ Unknown Capacitance in Schering Bridge (Microfarad)
- $\mathrm{C}_{1 \text { (wein) }}$ Known Capacitance 1 in Wein Bridge (Microfarad)
- $\mathbf{C}_{2(d s b)}$ Known Capacitance in De Sauty Bridge (Microfarad)
- $\mathbf{C}_{2(s b)}$ Known Capacitance 2 in Schering Bridge (Microfarad)
- $\mathbf{C}_{2 \text { (wein) }}$ Known Capacitance 2 in Wein Bridge (Microfarad)
- $\mathbf{C}_{4 \text { (hay) }}$ Capacitance in Hay Bridge (Microfarad)
- $\mathrm{C}_{4(\mathrm{sb})}$ Known Capacitance 4 in Schering Bridge (Microfarad)
- $\mathbf{C o}_{\mathbf{o}}$ Capacitance due to Space between Specimen (Microfarad)
- $\mathbf{C}_{\mathbf{s}}$ Capacitance of Specimen as Dielectric (Microfarad)
- $\mathbf{C}_{\mathbf{s p}}$ Capacitance of Specimen (Microfarad)
- d Distance between Electrodes (Meter)
- d Spacing between Electrode
- $\mathbf{D}_{1(d s b)}$ Dissipation Factor 1 in De Sauty Bridge
- $\mathrm{D}_{1(\mathrm{sb})}$ Dissipation Factor in Schering Bridge
- $\mathbf{D}_{\mathbf{2}(\mathbf{d s b})}$ Dissipation Factor 2 in De Sauty Bridge
- $\mathbf{f}_{(\text {wein })}$ Unknown Frequency in Wein Bridge (Hertz)
- $\mathbf{I}_{\mathbf{1 (a b)}}$ Inductor Current in Anderson Bridge (Ampere)
- $\mathbf{I}_{\mathbf{c}(\mathrm{ab})}$ Capacitor Current in Anderson Bridge (Ampere)
- $\mathrm{L}_{1(\mathrm{ab})}$ Unknown Inductance in Anderson Bridge (Millihenry)
- $\mathbf{L}_{1 \text { (hay) }}$ Unknown Inductance in Hay Bridge (Millihenry)
- $\mathrm{L}_{1 \text { (max) }}$ Unknown Inductance in Maxwell Bridge (Millihenry)
- $\mathbf{L}_{2 \text { (max) }}$ Variable Inductance in Maxwell Bridge (Millihenry)
- $\mathbf{Q}_{(\text {hay })}$ Quality Factor in Hay Bridge
- $\mathbf{Q}_{(\max)}$ Quality Factor in Maxwell Bridge
- $\mathbf{r}_{1(a b)}$ Series Resistance in Anderson Bridge (Ohm)
- $\mathbf{R}_{1(a b)}$ Inductor Resistance in Anderson Bridge (Ohm)
- $\mathbf{r}_{1(d s b)}$ Capacitor 1 Resistance in De Sauty Bridge (Ohm)
- $\mathbf{R}_{\mathbf{1} \text { (hay) }}$ Unknown Resistance in Hay Bridge (Ohm)
- $\mathbf{R}_{1 \text { (max) }}$ Unknown Resistance in Maxwell Bridge (Ohm)
- $\mathbf{r}_{1(\mathbf{s b})}$ Series Resistance 1 in Schering Bridge (Ohm)
- $\mathbf{R}_{1 \text { (wein) }}$ Known Resistance 1 in Wein Bridge (Ohm)
- $\mathbf{R}_{\mathbf{2 (a b)}}$ Known Resistance 2 in Anderson Bridge (Ohm)
- $\mathbf{r}_{\mathbf{2}}(\mathbf{d s b})$ Capacitor 2 Resistance in De Sauty Bridge (Ohm)
- $\mathbf{R}_{\mathbf{2}(\text { hay })}$ Known Resistance 2 in Hay Bridge (Ohm)
- $\mathbf{r}_{\mathbf{2 (m a x})}$ Decade Resistance in Maxwell Bridge (Ohm)
- $\mathbf{R}_{\mathbf{2 (m a x})}$ Variable Resistance in Maxwell Bridge (Ohm)
- $\mathbf{R}_{\mathbf{2}(\mathbf{w e i n)}}$ Known Resistance 2 in Wein Bridge (Ohm)
- $\mathbf{R}_{3(\mathbf{a b})}$ Known Resistance 3 in Anderson Bridge (Ohm)
- $\mathbf{R}_{\mathbf{3}(\mathbf{d s b})}$ Known Resistance 3 in De Sauty Bridge (Ohm)
- $\mathbf{R}_{\mathbf{3 (h a y)}}$ Known Resistance 3 in Hay Bridge (Ohm)
- $\mathbf{R}_{\mathbf{3}(\max)}$ Known Resistance 3 in Maxwell Bridge (Ohm)
- $\mathbf{R}_{\mathbf{3 (s b})}$ Known Resistance 3 in Schering Bridge (Ohm)
- $\mathbf{R}_{4(\mathbf{a b})}$ Known Resistance 4 in Anderson Bridge (Ohm)
- $\mathbf{R}_{\mathbf{4}(\mathrm{dsb})}$ Known Resistance 4 in De Sauty Bridge (Ohm)
- $\mathbf{R}_{\mathbf{4}(\mathrm{hay})}$ Known Resistance 4 in Hay Bridge (Ohm)
- $\mathbf{R}_{\mathbf{4 (m a x)}}$ Known Resistance 4 in Maxwell Bridge (Ohm)
- $\mathbf{R}_{4(\mathbf{s b})}$ Known Resistance 4 in Schering Bridge (Ohm)
- $\mathbf{R}_{\text {eff(max) }}$ Effective Resistance in Maxwell Bridge (Ohm)
- $\mathbf{R R}_{(\text {(wein) }}$ Resistance Ratio in Wein Bridge
- $\boldsymbol{\varepsilon r}$ Parallel Plate Relative Permeability
- $\boldsymbol{\varepsilon r}$ Parallel Plate Relative Permeability
- $\boldsymbol{\omega}$ Angular Frequency (Radian per Second)
- $\boldsymbol{\omega}_{(\text {wein })}$ Angular Frequency in Wein Bridge (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [Permitivity-vacuum], 8.85E-12

Permittivity of vacuum

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Area in Square Meter (m²)

Area Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion $\sqrt{5}$

- Measurement: Capacitance in Microfarad ($\mu \mathrm{F}$) Capacitance Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω) Electric Resistance Unit Conversion
- Measurement: Inductance in Millihenry (mH) Inductance Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s) Angular Frequency Unit Conversion

Check other formula lists

- AC Bridge Circuits Formulas \longleftarrow

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

