

Fluid Pressure and Its Measurement Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Fluid Pressure and Its Measurement Formulas

Fluid Pressure and Its Measurement &

1) Pressure at Point in Liquid given Pressure Head

fx $p=h\cdot S$

Open Calculator

 $\textbf{ex} \ 825 Pa = 1.1 m \cdot 0.75 kN/m^{_3}$

2) Pressure Difference between Two Points in Liquid

fx $\Delta ext{P} = ext{S} \cdot (ext{D} - ext{D}_2)$

Open Calculator

 $ext{ex} |750 ext{N/m}^2 = 0.75 ext{kN/m}^3 \cdot (16 ext{m} - 15 ext{m})|$

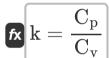
3) Pressure Head of Liquid

 $h = rac{p}{S}$

Open Calculator

ex $1.1 m = \frac{825 Pa}{0.75 kN/m^3}$

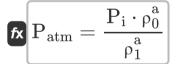
4) Pressure Head of Liquid given Pressure Head of another Liquid having same Pressure


 $\mathbf{h}_{1} = rac{\mathbf{h}_{2} \cdot \mathbf{w}_{2}}{\mathbf{SW}_{1}}$

Open Calculator 🚰

 $ext{ex} 13.84286 ext{m} = rac{10.2 ext{m} \cdot 19 ext{kN/m}^3}{14 ext{kN/m}^3}$

Equilibrium of Compressible Fluid Atmospheric Equilibrium


5) Adiabatic Exponent or Adiabatic Index

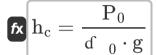
Open Calculator

ex $12.63158 = \frac{24 J/kg^{*} ^{\circ}C}{1.9 J/kg^{*} ^{\circ}C}$

6) Atmospheric Pressure According to Polytropic Process

Open Calculator

 $extbf{ex} egin{aligned} 349.9863 ext{Pa} &= rac{66.31 ext{Pa} \cdot (1000 ext{kg/m}^3)^{2.4}}{(500 ext{kg/m}^3)^{2.4}} \end{aligned}$


7) Density According to Polytropic Process

$$ho_0 =
ho_1 \cdot \left(rac{\mathrm{P}_{\mathrm{atm}}}{\mathrm{P}_{\mathrm{i}}}
ight)^{rac{1}{\mathrm{a}}}$$

Open Calculator

 $extbf{ex} 1000.016 ext{kg/m}^{_3} = 500 ext{kg/m}^{_3} \cdot \left(rac{350 ext{Pa}}{66.31 ext{Pa}}
ight)^{rac{1}{2.4}}$

8) Height of Fluid Column of Constant Specific Weight

Open Calculator

 $oxed{ex} 20.40816 \mathrm{mm} = rac{10 \mathrm{N/m^2}}{50 \mathrm{kg/m^3 \cdot 9.8 m/s^2}}$

9) Initial Density According to Polytropic Process

$$\left|\mathbf{F}_{i}=\mathrm{P}_{\mathrm{atm}}\cdot\left(rac{
ho_{1}}{
ho_{0}}
ight)^{\mathrm{a}}
ight|$$

Open Calculator

 $ext{ex} 66.3126 ext{Pa} = 350 ext{Pa} \cdot \left(rac{500 ext{kg/m}^3}{1000 ext{kg/m}^3}
ight)^{2.4}$

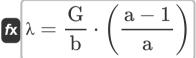
10) Initial Pressure according to Polytropic Process

 $extbf{P}_{ ext{i}} = rac{ ext{P}_{ ext{atm}} \cdot
ho_{1}^{ ext{a}}}{
ho_{0}^{ ext{a}}}$

Open Calculator

 $= \frac{350 \text{Pa} \cdot (500 \text{kg/m}^3)^{2.4}}{(1000 \text{kg/m}^3)^{2.4}}$

11) Positive Constant


 $\mathbf{f}\mathbf{x} = rac{1}{1 - \mathrm{K_h} \cdot rac{\lambda}{G}}$

Open Calculator

Open Calculator G

ex $1.000006 = \frac{1}{1 - 0.000001 \text{Hz} \cdot \frac{58}{10}}$

12) Temperature Lapse Rate

$$= 58.33333 = \frac{10}{0.1} \cdot \left(\frac{2.4 - 1}{2.4}\right)$$

Measurement of Pressure 🗗

13) Pressure at Point m in Pizometer

fx $p = S \cdot h$

Open Calculator 🚰

 $m ex~825Pa = 0.75kN/m^3 \cdot 1.1m$

14) Pressure Head at Point in Piezometer

Open Calculator

$$=$$
 $1.1 ext{m} = rac{825 ext{Pa}}{0.75 ext{kN/m}^3}$

15) Specific Weight of Liquid in Peizometer

Open Calculator

= $0.75 {
m kN/m^3} = rac{825 {
m Pa}}{1.1 {
m m}}$

Variables Used

- a Constant a
- b Constant b
- C_p Specific Heat at Constant Pressure (Joule per Kilogram per Celcius)
- C_v Specific Heat at Constant Volume (Joule per Kilogram per Celcius)
- D Depth of Point 1 (Meter)
- d₀ Density of Gas (Kilogram per Cubic Meter)
- **D**₂ Depth of Point 2 (Meter)
- g Acceleration due to Gravity (Meter per Square Second)
- G Specific Gravity of Fluid
- **h** Pressure Head (Meter)
- h 1 Pressure Head of Liquid 1 (Meter)
- h₂ Pressure Head of Liquid 2 (Meter)
- h_c Height of Fluid Column (Millimeter)
- k Adiabatic Index
- K_h Rate Constant (Hertz)
- p Pressure (Pascal)
- P₀ Pressure of Gas (Newton per Square Meter)
- P_{atm} Atmospheric Pressure (Pascal)
- Pi Initial Pressure of System (Pascal)
- S Specific Weight of Liquid in Piezometer (Kilonewton per Cubic Meter)
- SW₁ Specific Weight 1 (Kilonewton per Cubic Meter)
- W 2 Specific Weight of Liquid 2 (Kilonewton per Cubic Meter)

- **AP** Pressure Difference (Newton per Square Meter)
- λ Temperature Lapse Rate
- ρ₀ Density of Fluid (Kilogram per Cubic Meter)
- ρ₁ Density 1 (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m), Millimeter (mm)

 Length Unit Conversion
- Measurement: Pressure in Pascal (Pa), Newton per Square Meter (N/m²)

 Pressure Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 Acceleration Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Specific Heat Capacity in Joule per Kilogram per Celcius (J/kg*°C)
 Specific Heat Capacity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)
 Specific Weight Unit Conversion

Check other formula lists

- Buoyancy And Floatation
 Formulas
- Culverts Formulas
- Devices to Measure Flow Rate
 Formulas
- Equations of Motion and Energy Equation Formulas
- Flow of Compressible Fluids
 Formulas
- Flow Over Notches and Weirs Formulas
- Fluid Pressure and Its
 Measurement Formulas
- Fundamentals of Fluid Flow Formulas
- Hydroelectric Power Generation
 Formulas

- Hydrostatic Forces on Surfaces
 Formulas
- Impact of Free Jets Formulas
- Impulse Momentum Equation and its Applications Formulas
- Liquids in Relative Equilibrium Formulas
- Most Efficient Section of Channel Formulas
- Non uniform Flow in Channels Formulas
- Properties of Fluid Formulas
- Thermal Expansion of Pipe and Pipe Stresses Formulas
- Uniform Flow in Channels Formulas
- Water Power Engineering Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/20/2024 | 9:49:27 AM UTC

Please leave your feedback here...

