

Take-off and Landing Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Take-off and Landing Formulas

Take-off and Landing 🗗

Landing 🗗

1) Landing ground roll distance

$$s_{L} = 1.69 \cdot \left(W^{2}\right) \cdot \left(\frac{1}{[g] \cdot \rho_{\infty} \cdot S \cdot C_{L,max}}\right) \cdot \left(\frac{1}{\left(0.5 \cdot \rho_{\infty} \cdot \left(\left(0.7 \cdot V_{T}\right)^{2}\right) \cdot S \cdot \left(C_{D,0} + \left(\phi \cdot \frac{C_{D,0}}{\pi \cdot e^{-C_{D,0}}}\right)\right)\right)}\right)$$

ex

fx

$$1.448838m = 1.69 \cdot \left((60.5N)^2 \right) \cdot \left(\frac{1}{[g] \cdot 1.225 kg/m^3 \cdot 5.08 m^2 \cdot 0.000885} \right) \cdot \left(\frac{1}{\left(0.5 \cdot 1.225 kg/m^3 \cdot \left((0.7 \cdot 193 m^2 + 1.000885 m^2 + 1.000885 m^2 + 1.000885 m^2 + 1.0008885 m^2 +$$

2) Landing Ground Run

2) Landing Ground Hair C

n Calculator C

Open Calculator

$$ext{Sg}_{ ext{l}} = (ext{F}_{ ext{normal}} \cdot ext{V}_{ ext{TD}}) + \left(rac{ ext{W}_{ ext{aircraft}}}{2 \cdot [ext{g}]}
ight) \cdot \int \! \left(rac{2 \cdot ext{V}_{\infty}}{ ext{V}_{ ext{TR}} + ext{D} + \mu_{ ext{ref}} \cdot \left(ext{W}_{ ext{aircraft}} - ext{L}
ight)}, x, 0, ext{V}_{ ext{TD}}
ight)$$

$$\boxed{ 2042.175 \mathrm{m} = (0.3\mathrm{N} \cdot 23\mathrm{m/s}) + \left(\frac{2000\mathrm{kg}}{2 \cdot [\mathrm{g}]}\right) \cdot \int \left(\frac{2 \cdot 292\mathrm{m/s}}{600\mathrm{N} + 65\mathrm{N} + 0.004 \cdot (2000\mathrm{kg} - 7\mathrm{N})}, x, 0, 23\mathrm{m/s} \right) }$$

3) Stall velocity for given touchdown velocity

$$V_{
m stall} = rac{V_{
m T}}{1.3}$$

Open Calculator 🛂

$$148.4615 \text{m/s} = \frac{193 \text{m/s}}{1.3}$$

4) Touchdown velocity

$$V_{\mathrm{T}} = 1.3 \cdot \left(\sqrt{2 \cdot rac{W}{
ho_{\infty} \cdot S \cdot C_{\mathrm{L,max}}}}
ight)$$

Open Calculator

$$\boxed{ 192.6924 \text{m/s} = 1.3 \cdot \left(\sqrt{2 \cdot \frac{60.5 \text{N}}{1.225 \text{kg/m}^3 \cdot 5.08 \text{m}^2 \cdot 0.000885}} \right) }$$

5) Touchdown velocity for given stall velocity

fx
$$V_{
m T} = 1.3 \cdot V_{
m stall}$$

Open Calculator 🗗

$$m ex \ 192.4m/s = 1.3 \cdot 148m/s$$

Take-Off

6) Coefficient of rolling friction during ground roll

$$\mu_{
m r} = rac{R}{W-F_{
m L}}$$

$$\boxed{0.1 = \frac{5\text{N}}{60.5\text{N} - 10.5\text{N}}}$$

7) Drag during ground effect

$$\boxed{\mathbf{F}_D = \left(C_{D,e} + \frac{C_L^2 \cdot \phi}{\pi \cdot e \cdot AR}\right) \cdot \left(0.5 \cdot \rho_\infty \cdot V^2 \cdot S\right)}$$

$$\boxed{\text{71977.67N} = \left(4.5 + \frac{(5.5)^2 \cdot 0.4}{\pi \cdot 0.5 \cdot 4}\right) \cdot \left(0.5 \cdot 1.225 \text{kg/m}^3 \cdot (60 \text{m/s})^2 \cdot 5.08 \text{m}^2\right)}$$

8) Ground effect factor

$$\phi = rac{\left(16\cdotrac{h}{b}
ight)^2}{1+\left(16\cdotrac{h}{b}
ight)^2}$$

$$\boxed{ \text{ex} \left[0.4796 = \frac{\left(16 \cdot \frac{3\text{m}}{50\text{m}} \right)^2}{1 + \left(16 \cdot \frac{3\text{m}}{50\text{m}} \right)^2} \right] }$$

9) Lift acting on aircraft during ground roll

$$\mathbf{F}_{\mathrm{L}} = \mathrm{W} - \left(rac{\mathrm{R}}{\mu_{\mathrm{r}}}
ight)$$

$$\boxed{10.5\mathrm{N} = 60.5\mathrm{N} - \left(\frac{5\mathrm{N}}{0.1}\right)}$$

10) Liftoff distance

 $ho
ho
ho_{
m LO} = 1.44 \cdot rac{
m W^2}{
m [g] \cdot
ho_{
m m} \cdot
m S \cdot
m C_{
m L,max} \cdot
m T}$

Open Calculator 🗗

11) Liftoff velocity for given stall velocity

 $V_{
m LO} = 1.2 \cdot V_{
m stall}$

Open Calculator

 $= 177.6 \text{m/s} = 1.2 \cdot 148 \text{m/s}$

12) Liftoff velocity for given weight

 $ag{V_{LO}} = 1.2 \cdot \left(\sqrt{rac{2 \cdot W}{
ho_{\infty} \cdot S \cdot C_{L,max}}}
ight)$

Open Calculator 🚰

13) Maximum Lift coefficient for given liftoff velocity

 $\boxed{ 177.8699 \text{m/s} = 1.2 \cdot \left(\sqrt{\frac{2 \cdot 60.5 \text{N}}{1.225 \text{kg/m}^3 \cdot 5.08 \text{m}^2 \cdot 0.000885}} \right) }$

13) Maximum Lift coefficient for given liftoff velocity 🖸

 $\mathbf{E} \left[\mathrm{C_{L,max}} = 2.88 \cdot rac{\mathrm{W}}{
ho_{\infty} \cdot \mathrm{S} \cdot \left(\mathrm{V_{LO}^2}
ight)}
ight]$

Open Calculator

14) Maximum Lift coefficient for given stall velocity

 $extbf{K} egin{aligned} C_{L,max} &= 2 \cdot rac{W}{
ho_{\infty} \cdot S \cdot \left(V_{stall}^2
ight)} \end{aligned}$

Open Calculator

 $\boxed{0.000888 = 2 \cdot \frac{60.5 \mathrm{N}}{1.225 \mathrm{kg/m^3} \cdot 5.08 \mathrm{m^2} \cdot \left(\left(148 \mathrm{m/s}\right)^2\right)}}$

15) Resistance force during ground roll 🗗

fx $m R = \mu_r \cdot (W - F_L)$

Open Calculator

 $= 5N = 0.1 \cdot (60.5N - 10.5N)$

© calculatoratoz.com. A softusvista inc. venture!

16) Stall velocity for given liftoff velocity

$$V_{
m stall} = rac{V_{
m LO}}{1.2}$$

Open Calculator 🚰

$$148 ext{m/s} = rac{177.6 ext{m/s}}{1.2}$$

17) Stall velocity for given weight

$$V_{stall} = \sqrt{rac{2 \cdot W}{
ho_{\infty} \cdot S \cdot C_{L,max}}}$$

Open Calculator 🖸

18) Take Off Ground Run

$$\mathbf{S}_{\mathrm{g}} = rac{\mathrm{W}_{\mathrm{aircraft}}}{2 \cdot [\mathrm{g}]} \cdot \int \! \left(rac{2 \cdot \mathrm{V}_{\infty}}{\mathrm{N} - \mathrm{D} - \mu_{\mathrm{ref}} \cdot (\mathrm{W}_{\mathrm{aircraft}} - \mathrm{L})}, x, 0, \mathrm{V}_{\mathrm{LOS}}
ight)$$

Open Calculator

$$\boxed{ 239.4067 \text{m} = \frac{2000 \text{kg}}{2 \cdot [\text{g}]} \cdot \int \left(\frac{2 \cdot 292 \text{m/s}}{20000 \text{N} - 65 \text{N} - 0.004 \cdot (2000 \text{kg} - 7 \text{N})}, x, 0, 80.11 \text{m/s} \right) }$$

19) Thrust for given liftoff distance

$$T = 1.44 \cdot \frac{W^2}{[g] \cdot \rho_{\infty} \cdot S \cdot C_{L,max} \cdot s_{LO}}$$

Open Calculator 🗗

$$\boxed{ 186.5984 N = 1.44 \cdot \frac{\left(60.5 N\right)^2}{[g] \cdot 1.225 kg/m^3 \cdot 5.08 m^2 \cdot 0.000885 \cdot 523 m} }$$

20) Weight of aircraft during ground roll

$$W = \left(rac{R}{\mu_r}
ight) + F_L$$

Open Calculator

$$\boxed{\textbf{60.5N} = \left(\frac{5N}{0.1}\right) + 10.5N}$$

Variables Used

- · AR Aspect Ratio of a Wing
- **b** Wingspan (Meter)
- C_{D.0} Zero-Lift Drag Coefficient
- C_{D.e} Parasite Drag Coefficient
- C1 Lift Coefficient
- C_{L.max} Maximum Lift Coefficient
- **D** Drag Force (Newton)
- · e Oswald Efficiency Factor
- F_D Drag (Newton)
- F_L Lift (Newton)
- Fnormal Normal Force (Newton)
- **h** Height from Ground (Meter)
- L Lift Force (Newton)
- N Thrust Force (Newton)
- R Rolling Resistance (Newton)
- S Reference Area (Square Meter)
- S_q Takeoff Ground Run (Meter)
- SI Landing Roll (Meter)
- SLO Liftoff Distance (Meter)
- Sg_I Landing Ground Run (Meter)
- T Aircraft Thrust (Newton)
- V Flight Velocity (Meter per Second)
- V_∞ Velocity of Aircraft (Meter per Second)
- V_{LO} Liftoff velocity (Meter per Second)
- V_{LOS} Aircraft Lift Off Speed (Meter per Second)
- V_{stall} Stall Velocity (Meter per Second)
- V_T Touchdown Velocity (Meter per Second)
- V_{TD} Velocity at Touchdown Point (Meter per Second)
- V_{TR} Reverse Thrust (Newton)
- W Weight (Newton)
- Waircraft Weight Of Aircraft (Kilogram)
- µr Coefficient of Rolling Friction
- μ_{ref} Reference Of Rolling Resistance Coefficient
- ρ_∞ Freestream Density (Kilogram per Cubic Meter)

φ Ground Effect Factor

Constants, Functions, Measurements used

Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant

• Constant: [g], 9.80665

Gravitational acceleration on Earth

• Function: int, int(expr, arg, from, to)

The definite integral can be used to calculate net signed area, which is the area above the x -axis minus the area below the x -axis.

• Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

• Measurement: Length in Meter (m)
Length Unit Conversion

• Measurement: Weight in Kilogram (kg)
Weight Unit Conversion

• Measurement: Area in Square Meter (m²)

Area Unit Conversion

• Measurement: Speed in Meter per Second (m/s)
Speed Unit Conversion

• Measurement: Force in Newton (N)
Force Unit Conversion

Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion

Check other formula lists

- Climbing Flight Formulas
- Range and Endurance Formulas

- Take-off and Landing Formulas
- Turning Flight Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/8/2024 | 4:53:15 AM UTC

Please leave your feedback here...

