
calculatoratoz.com

unitsconverters.com

Sheet Metal Operations Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 26 Sheet Metal Operations Formulas

Sheet Metal Operations ©

Bending Operation

1) Bend Allowance 〔
$f \mathrm{f} \mathrm{B}_{\mathrm{al}}=\theta \cdot\left(\mathrm{r}_{\mathrm{c}}+\lambda \cdot \mathrm{t}_{\mathrm{bar}}\right)$
Open Calculator
ex $0.026125 \mathrm{~mm}=3.14 \mathrm{rad} \cdot(0.007 \mathrm{~mm}+0.44 \cdot 0.003 \mathrm{~mm})$
2) Bending Force
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\mathrm{B}}=\frac{\mathrm{K}_{\mathrm{bd}} \cdot \mathrm{L}_{\mathrm{b}} \cdot \sigma_{\mathrm{ut}} \cdot \mathrm{t}_{\text {blank }}^{2}}{\mathrm{w}}$
Open Calculator
ex $32.5425 \mathrm{~N}=\frac{0.031 \cdot 1.01 \mathrm{~mm} \cdot 450 \mathrm{~N} / \mathrm{mm}^{2} \cdot(8.99 \mathrm{~mm})^{2}}{34.991620 \mathrm{~mm}}$
3) Clearance between Two Shears
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{s}}=0.0032 \cdot \mathrm{t}_{\mathrm{b}} \cdot(\tau)^{0.5}$
ex $51.13796 \mathrm{~mm}=0.0032 \cdot 1.13 \mathrm{~mm} \cdot\left(200 \mathrm{~N} / \mathrm{mm}^{2}\right)^{0.5}$
4) Length of Bent Part in Bending Operation
$f \mathbf{x} L_{b}=\frac{F_{B} \cdot w}{K_{b d} \cdot \sigma_{u t} \cdot t_{s t k}^{2}}$

Open Calculator

ex $1.007757 \mathrm{~mm}=\frac{32.5425 \mathrm{~N} \cdot 34.991620 \mathrm{~mm}}{0.031 \cdot 450 \mathrm{~N} / \mathrm{mm}^{2} \cdot(9 \mathrm{~mm})^{2}}$
5) Stock Thickness used in Bending Operation
$f x \mathrm{t}_{\mathrm{stk}}=\sqrt{\frac{\mathrm{F}_{\mathrm{B}} \cdot \mathrm{w}}{\mathrm{K}_{\mathrm{bd}} \cdot \mathrm{L}_{\mathrm{b}} \cdot \sigma_{\mathrm{ut}}}}$
$\epsilon_{x} 8.99 \mathrm{~mm}=\sqrt{\frac{32.5425 \mathrm{~N} \cdot 34.991620 \mathrm{~mm}}{0.031 \cdot 1.01 \mathrm{~mm} \cdot 450 \mathrm{~N} / \mathrm{mm}^{2}}}$
6) Width between Contact Points during Bending
$f \mathbf{x} w=\frac{\mathrm{K}_{\mathrm{bd}} \cdot \mathrm{L}_{\mathrm{b}} \cdot \sigma_{\mathrm{ut}} \cdot \mathrm{t}_{\text {blank }}^{2}}{\mathrm{~F}_{\mathrm{B}}}$
Open Calculator
ex $34.99162 \mathrm{~mm}=\frac{0.031 \cdot 1.01 \mathrm{~mm} \cdot 450 \mathrm{~N} / \mathrm{mm}^{2} \cdot(8.99 \mathrm{~mm})^{2}}{32.5425 \mathrm{~N}}$

Drawing Operation ©

7) Blank Diameter from Percent Reduction
$f \times D_{b}=d_{s} \cdot\left(1-\frac{P R_{\%}}{100}\right)^{-1}$
Open Calculator
ex $84.21053 \mathrm{~mm}=80 \mathrm{~mm} \cdot\left(1-\frac{5}{100}\right)^{-1}$
8) Blank Size for Drawing Operation
$f \mathbf{f x} \mathrm{D}_{\mathrm{b}}=\sqrt{\mathrm{d}_{\mathrm{s}}^{2}+4 \cdot \mathrm{~d}_{\mathrm{s}} \cdot \mathrm{h}_{\mathrm{shl}}}$
Open Calculator
ex $84.19026 \mathrm{~mm}=\sqrt{(80 \mathrm{~mm})^{2}+4 \cdot 80 \mathrm{~mm} \cdot 2.15 \mathrm{~mm}}$
9) Drawing Force for Cylindrical Shells
$f \mathrm{f} \mathrm{P}_{\mathrm{d}}=\pi \cdot \mathrm{d}_{\mathrm{s}} \cdot \mathrm{t}_{\mathrm{b}} \cdot \sigma_{\mathrm{y}} \cdot\left(\frac{\mathrm{D}_{\mathrm{b}}}{\mathrm{d}_{\mathrm{s}}}-\mathrm{C}_{\mathrm{f}}\right)$
Open Calculator
ex
$0.004498 \mathrm{~N} / \mathrm{mm}^{2}=\pi \cdot 80 \mathrm{~mm} \cdot 1.13 \mathrm{~mm} \cdot 35 \mathrm{~N} / \mathrm{mm}^{2} \cdot\left(\frac{84.2 \mathrm{~mm}}{80 \mathrm{~mm}}-0.6\right)$

Sheet Metal Operations Formulas...

10) Percent Reduction after Drawing
$\mathrm{fx} \mathrm{PR}_{\%}=100 \cdot\left(1-\frac{\mathrm{d}_{\mathrm{s}}}{\mathrm{D}_{\mathrm{b}}}\right)$
ex $4.988124=100 \cdot\left(1-\frac{80 \mathrm{~mm}}{84.2 \mathrm{~mm}}\right)$
11) Shell Diameter from Percent Reduction
$f \mathrm{f} \mathrm{d}_{\mathrm{s}}=\mathrm{D}_{\mathrm{b}} \cdot\left(1-\frac{\mathrm{PR}_{\%}}{100}\right)$
Open Calculator
ex $79.99 \mathrm{~mm}=84.2 \mathrm{~mm} \cdot\left(1-\frac{5}{100}\right)$

Ironing Operation

12) Average of Tensile Strength before and after Ironing
$f \times S_{\mathrm{avg}}=\frac{\mathrm{F}}{\pi \cdot \mathrm{d}_{1} \cdot \mathrm{t}_{\mathrm{f}} \cdot \ln \left(\frac{\mathrm{t}_{0}}{\mathrm{t}_{\mathrm{f}}}\right)}$
Open Calculator
ex $0.181902 \mathrm{~N} / \mathrm{mm}^{2}=\frac{8.01 \mathrm{~N}}{\pi \cdot 2.5 \mathrm{~mm} \cdot 13 \mathrm{~mm} \cdot \ln \left(\frac{20.01 \mathrm{~mm}}{13 \mathrm{~mm}}\right)}$

13) Ironing Force after Drawing

$f \times F=\pi \cdot d_{1} \cdot t_{f} \cdot S_{a v g} \cdot \ln \left(\frac{t_{0}}{t_{f}}\right)$

Open Calculator

ex $8.009301 \mathrm{~N}=\pi \cdot 2.5 \mathrm{~mm} \cdot 13 \mathrm{~mm} \cdot 0.181886 \mathrm{~N} / \mathrm{mm}^{2} \cdot \ln \left(\frac{20.01 \mathrm{~mm}}{13 \mathrm{~mm}}\right)$
14) Mean Diameter of Shell after Ironing
$\mathrm{fx} \mathrm{d}_{1}=\frac{\mathrm{F}}{\pi \cdot \mathrm{S}_{\mathrm{avg}} \cdot \mathrm{t}_{\mathrm{f}} \cdot \ln \left(\frac{\mathrm{t}_{0}}{\mathrm{t}_{\mathrm{f}}}\right)}$
Open Calculator

$$
\mathrm{ex} 2.500218 \mathrm{~mm}=\frac{8.01 \mathrm{~N}}{\pi \cdot 0.181886 \mathrm{~N} / \mathrm{mm}^{2} \cdot 13 \mathrm{~mm} \cdot \ln \left(\frac{20.01 \mathrm{~mm}}{13 \mathrm{~mm}}\right)}
$$

15) Thickness of Shell before Ironing
$f \mathbf{x} \mathrm{t}_{0}=\mathrm{t}_{\mathrm{f}} \cdot \exp \left(\frac{\mathrm{F}}{\pi \cdot \mathrm{d}_{1} \cdot \mathrm{t}_{\mathrm{f}} \cdot \mathrm{S}_{\mathrm{avg}}}\right)$
[^0]
Punch Operation

16) Blank Size when there is Corner Radius on Punch
$\mathrm{fx} \mathrm{d}_{\mathrm{bl}}=\sqrt{\mathrm{d}_{\mathrm{s}}^{2}+4 \cdot \mathrm{~d}_{\mathrm{s}} \cdot \mathrm{h}_{\mathrm{shl}}-0.5 \cdot \mathrm{r}_{\mathrm{cn}}}$
Open Calculator \longleftarrow
ex
$84.18135 \mathrm{~mm}=\sqrt{(80 \mathrm{~mm})^{2}+4 \cdot 80 \mathrm{~mm} \cdot 2.15 \mathrm{~mm}-0.5 \cdot 0.003001 \mathrm{~mm}}$
17) Maximum Shear Force given Shear Applied to Punch or Die
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\mathrm{s}}=\mathrm{L}_{\mathrm{ct}} \cdot \mathrm{t}_{\mathrm{stk}} \cdot \frac{\mathrm{t}_{\mathrm{stk}} \cdot \mathrm{p}}{\mathrm{t}_{\mathrm{sh}}}$
Open Calculator
ex $0.015584 \mathrm{~N}=615.66 \mathrm{~m} \cdot 9 \mathrm{~mm} \cdot \frac{9 \mathrm{~mm} \cdot 0.499985 \mathrm{~mm}}{1.599984 \mathrm{~mm}}$
18) Penetration of Punch as Fraction
$\mathrm{fx} \mathrm{p}=\frac{\mathrm{F}_{\mathrm{s}} \cdot \mathrm{t}_{\mathrm{sh}}}{\mathrm{L}_{\mathrm{ct}} \cdot \mathrm{t}_{\mathrm{stk}}^{2}}$
Open Calculator 〔
ex $0.499581 \mathrm{~mm}=\frac{0.015571 \mathrm{~N} \cdot 1.599984 \mathrm{~mm}}{615.66 \mathrm{~m} \cdot(9 \mathrm{~mm})^{2}}$
19) Perimeter of Cut when Shear is Applied
$f \mathrm{fx} \mathrm{L}_{\mathrm{ct}}=\frac{\mathrm{F}_{\mathrm{s}} \cdot \mathrm{t}_{\mathrm{sh}}}{\mathrm{p} \cdot \mathrm{t}_{\mathrm{stk}}^{2}}$

Open Calculator

ex $615.1629 \mathrm{~m}=\frac{0.015571 \mathrm{~N} \cdot 1.599984 \mathrm{~mm}}{0.499985 \mathrm{~mm} \cdot(9 \mathrm{~mm})^{2}}$

20) Punch Load

$\mathrm{fx}_{\mathrm{x}} \mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{ct}} \cdot \mathrm{t}_{\text {bar }} \cdot \mathrm{S}_{\mathrm{c}}$
Open Calculator
ex $16.83061 \mathrm{~N}=615.66 \mathrm{~m} \cdot 0.003 \mathrm{~mm} \cdot 9112.5$
21) Punching Force for Holes Smaller than Sheet Thickness
$f \mathrm{x} P=\frac{\mathrm{d}_{\mathrm{rm}} \cdot \mathrm{t}_{\mathrm{b}} \cdot \varepsilon}{\left(\frac{\mathrm{d}_{\mathrm{rm}}}{\mathrm{t}_{\mathrm{b}}}\right)^{\frac{1}{3}}}$

$$
\mathrm{ex} 178.3896 \mathrm{~N}=\frac{13.3 \mathrm{~mm} \cdot 1.13 \mathrm{~mm} \cdot 27 \mathrm{~N} / \mathrm{mm}^{2}}{\left(\frac{13.3 \mathrm{~mm}}{1.13 \mathrm{~mm}}\right)^{\frac{1}{3}}}
$$

22) Shear on Punch or Die
$f \mathrm{x} \mathrm{t}_{\mathrm{sh}}=\mathrm{L}_{\mathrm{ct}} \cdot \mathrm{t}_{\mathrm{stk}} \cdot \frac{\mathrm{t}_{\mathrm{stk}} \cdot \mathrm{p}}{\mathrm{F}_{\mathrm{s}}}$
ex $1.601277 \mathrm{~mm}=615.66 \mathrm{~m} \cdot 9 \mathrm{~mm} \cdot \frac{9 \mathrm{~mm} \cdot 0.499985 \mathrm{~mm}}{0.015571 \mathrm{~N}}$

Sheet Metal Operations Formulas...

23) Stock Thickness when Shear used on Punch
$f \mathrm{fx} \mathrm{t}_{\mathrm{stk}}=\sqrt{\frac{\mathrm{F}_{\mathrm{s}} \cdot \mathrm{t}_{\mathrm{sh}}}{\mathrm{L}_{\mathrm{ct}} \cdot \mathrm{p}}}$

Open Calculator

ex $8.996366 \mathrm{~mm}=\sqrt{\frac{0.015571 \mathrm{~N} \cdot 1.599984 \mathrm{~mm}}{615.66 \mathrm{~m} \cdot 0.499985 \mathrm{~mm}}}$

Stripping Operation

24) Perimeter of Cut given Stripper Force
fx $\mathrm{L}_{\mathrm{cut}}=\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{K} \cdot \mathrm{t}_{\text {blank }}}$
Open Calculator
ex $617.3526 \mathrm{~mm}=\frac{0.000111 \mathrm{~N}}{0.02 \cdot 8.99 \mathrm{~mm}}$
25) Stripping Force
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{s}}=\mathrm{K} \cdot \mathrm{L}_{\text {cut }} \cdot \mathrm{t}_{\text {blank }}$
Open Calculator
ex $0.000111 \mathrm{~N}=0.02 \cdot 616.6667 \mathrm{~mm} \cdot 8.99 \mathrm{~mm}$
26) Thickness of Stock given Stripper Force
$f \mathrm{f} \mathrm{t}_{\text {blank }}=\frac{\mathrm{P}_{\mathrm{s}}}{\mathrm{K} \cdot \mathrm{L}_{\mathrm{cut}}}$
Open Calculator
ex $9 \mathrm{~mm}=\frac{0.000111 \mathrm{~N}}{0.02 \cdot 616.6667 \mathrm{~mm}}$

Variables Used

- Bal Bend Allowance (Millimeter)
- \mathbf{C}_{f} Cover Friction Constant
- $\mathbf{C}_{\mathbf{s}}$ Clearance between Two Shears (Millimeter)
- \mathbf{d}_{1} Mean Shell Diameter after Ironing (Millimeter)
- \mathbf{D}_{b} Sheet Diameter (Millimeter)
- $\mathbf{d}_{\mathbf{b l}}$ Blank Diameter (Millimeter)
- \mathbf{d}_{rm} Punch or Ram Diameter (Millimeter)
- $\mathbf{d}_{\mathbf{s}}$ Outer Diameter of Shell (Millimeter)
- F Ironing Force (Newton)
- $\mathbf{F}_{\mathbf{B}}$ Bending Force (Newton)
- $\mathbf{F}_{\mathbf{s}}$ Maximum Shear Force (Newton)
- $\mathbf{h}_{\text {shl }}$ Shell Height (Millimeter)
- K Stripping Constant
- K $\mathbf{K d}_{\text {Bending Die Constant }}$
- $\mathbf{L}_{\mathbf{b}}$ Bent Part Length (Millimeter)
- $L_{c t}$ Cutting Perimeter (Meter)
- $L_{\text {cut }}$ Perimeter of Cut (Millimeter)
- L_{p} Punch Load (Newton)
- \mathbf{p} Punch Penetration (Millimeter)
- P Punching Force or Load (Newton)
- $\mathbf{P}_{\mathbf{d}}$ Drawing Force (Newton per Square Millimeter)
- $\mathbf{P}_{\mathbf{s}}$ Stripper Force (Newton)
- $\mathbf{P R}_{\%}$ Percent Reduction after Drawing
- $\mathbf{r}_{\mathbf{c}}$ Radius (Millimeter)
- $\mathbf{r}_{\mathbf{c n}}$ Corner Radius on Punch (Millimeter)
- $\mathbf{S}_{\text {avg }}$ Average Tensile Strength Before \& After Ironing (Newton per Square Millimeter)
- $\mathbf{S}_{\mathbf{C}}$ Strength Coefficient
- $\mathbf{t}_{\mathbf{0}}$ Shell Thickness before Ironing (Millimeter)
- $\mathbf{t}_{\mathbf{b}}$ Sheet Thickness (Millimeter)
- $\mathbf{t}_{\text {bar }}$ Bar Thickness (Millimeter)
- $\mathbf{t}_{\text {blank }}$ Blank Thickness (Millimeter)
- $\mathbf{t}_{\mathbf{f}}$ Shell Thickness after Ironing (Millimeter)
- $\mathbf{t}_{\mathbf{s h}}$ Shear on Punch (Millimeter)
- $\mathbf{t}_{\text {stk }}$ Thickness of Stock (Millimeter)
- w Width between Contact Points (Millimeter)
- ε Tensile Strength (Newton per Square Millimeter)
- $\boldsymbol{\theta}$ Subtended Angle in Radians (Radian)
- $\boldsymbol{\lambda}$ Stretch Factor
- $\boldsymbol{\sigma}_{\mathbf{u t}}$ Ultimate Tensile Strength (Newton per Square Millimeter)
- σ_{y} Yield Strength (Newton per Square Millimeter)
- T Shear Strength of Material (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: exp, exp(Number)
n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Millimeter (mm), Meter (m)

Length Unit Conversion

- Measurement: Pressure in Newton per Square Millimeter (N/mm²) Pressure Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Radian (rad)

Angle Unit Conversion

Check other formula lists

- Composite Materials Formulas ©. Sheet Metal Operations
- Rolling Process Formulas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/19/2024 | 9:37:59 AM UTC
Please leave your feedback here...

[^0]: $20.01075 \mathrm{~mm}=13 \mathrm{~mm} \cdot \exp \left(\frac{8.01 \mathrm{~N}}{\pi \cdot 2.5 \mathrm{~mm} \cdot 13 \mathrm{~mm} \cdot 0.181886 \mathrm{~N} / \mathrm{mm}^{2}}\right)$

