calculatoratoz.com
unitsconverters.com

Conduction in Sphere Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Conduction in Sphere Formulas

Conduction in Sphere

1) Convection Resistance for Spherical Layer
$f \mathrm{fr} \mathrm{r}_{\mathrm{th}}=\frac{1}{4 \cdot \pi \cdot \mathrm{r}^{2} \cdot \mathrm{~h}}$
ex $0.001326 \mathrm{~K} / \mathrm{W}=\frac{1}{4 \cdot \pi \cdot(1.4142 \mathrm{~m})^{2} \cdot 30 \mathrm{~W} / \mathrm{m}^{2} * \mathrm{~K}}$
2) Heat Flow Rate through Spherical Composite Wall of 2 Layers in Series
$f \times Q^{\prime}=\frac{T_{i}-T_{o}}{\frac{1}{4 \cdot \pi \cdot \mathrm{k}_{1}} \cdot\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right)+\frac{1}{4 \cdot \pi \cdot \mathrm{k}_{2}} \cdot\left(\frac{1}{\mathrm{r}_{2}}-\frac{1}{\mathrm{r}_{3}}\right)}$
ex $1.388915 \mathrm{~W}=\frac{}{4 \cdot \pi}$
3) Heat Flow Rate thr
fx $\mathrm{Q}=\frac{\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}}{\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{4 \cdot \pi \cdot \mathrm{k} \cdot \mathrm{r}_{1} \cdot \mathrm{r}_{2}}}$
$305 \mathrm{~K}-300 \mathrm{~K}$
ex $3769.911 \mathrm{~W}=\frac{305 \mathrm{~K}-300 \mathrm{~K}}{\frac{6 \mathrm{~m}-5 \mathrm{~m}}{4 \cdot \pi \cdot 2 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 5 \mathrm{~m} \cdot 6 \mathrm{~m}}}$
4) Inner Surface Temperature of Spherical Wall
$f \mathbf{x} \mathrm{~T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{o}}+\frac{\mathrm{Q}}{4 \cdot \pi \cdot \mathrm{k}} \cdot\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right)$
ex $305 \mathrm{~K}=300 \mathrm{~K}+\frac{3769.9111843 \mathrm{~W}}{4 \cdot \pi \cdot 2 \mathrm{~W} /(\mathrm{m} * \mathrm{~K})} \cdot\left(\frac{1}{5 \mathrm{~m}}-\frac{1}{6 \mathrm{~m}}\right)$
5) Outer Surface Temperature of Spherical Wall
$f \mathbf{x} \mathrm{~T}_{\mathrm{o}}=\mathrm{T}_{\mathrm{i}}-\frac{\mathrm{Q}}{4 \cdot \pi \cdot \mathrm{k}} \cdot\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right)$
ex $300 \mathrm{~K}=305 \mathrm{~K}-\frac{3769.9111843 \mathrm{~W}}{4 \cdot \pi \cdot 2 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)} \cdot\left(\frac{1}{5 \mathrm{~m}}-\frac{1}{6 \mathrm{~m}}\right)$
6) Thermal Resistance of Spherical Composite Wall of 2 Layers in Series with Convection
$f \mathrm{x} \mathrm{R}_{\mathrm{th}}=\frac{1}{4 \cdot \pi} \cdot\left(\frac{1}{\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{r}_{1}^{2}}+\frac{1}{\mathrm{k}_{1}} \cdot\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right)+\frac{1}{\mathrm{k}_{2}} \cdot\left(\frac{1}{\mathrm{r}_{2}}-\frac{1}{\mathrm{r}_{3}}\right)+\frac{1}{\mathrm{~h}_{\mathrm{o}} \cdot \mathrm{r}_{3}^{2}}\right)$
Open Calculator
ex
$7.319773 \mathrm{~K} / \mathrm{W}=\frac{1}{4 \cdot \pi} \cdot\left(\frac{1}{0.001038 \mathrm{~W} / \mathrm{m}^{2} * \mathrm{~K} \cdot(5 \mathrm{~m})^{2}}+\frac{1}{0.001 \mathrm{~W} /(\mathrm{m} * \mathrm{~K})} \cdot\left(\frac{1}{5 \mathrm{~m}}-\frac{1}{6 \mathrm{~m}}\right)+\frac{1}{0.002 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)}\right.$
7) Thermal Resistance of Spherical Wall
$f \times r_{t h}=\frac{r_{2}-r_{1}}{4 \cdot \pi \cdot k \cdot r_{1} \cdot r_{2}}$
ex $0.001326 \mathrm{~K} / \mathrm{W}=\frac{6 \mathrm{~m}-5 \mathrm{~m}}{4 \cdot \pi \cdot 2 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 5 \mathrm{~m} \cdot 6 \mathrm{~m}}$
8) Thickness of Spherical Wall to Maintain given Temperature Difference
$f \mathrm{x} t=\frac{1}{\frac{1}{\mathrm{r}}-\frac{4 \cdot \pi \cdot \mathrm{k} \cdot\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)}{\mathrm{Q}}}-\mathrm{r}$
ex $0.069963 \mathrm{~m}=\frac{1}{\frac{1}{1.4142 \mathrm{~m}}-\frac{4 \cdot \pi \cdot 2 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot(305 \mathrm{~K}-300 \mathrm{~K})}{3769.9111843 \mathrm{~W}}}-1.4142 \mathrm{~m}$
9) Total Thermal Resistance of Spherical Wall of 2 Layers without Convection
$f \times r_{\mathrm{tr}}=\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{4 \cdot \pi \cdot \mathrm{k}_{1} \cdot \mathrm{r}_{1} \cdot \mathrm{r}_{2}}+\frac{\mathrm{r}_{3}-\mathrm{r}_{2}}{4 \cdot \pi \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{2} \cdot \mathrm{r}_{3}}$
$\mathrm{ex} 3.599933 \mathrm{~K} / \mathrm{W}=\frac{6 \mathrm{~m}-5 \mathrm{~m}}{4 \cdot \pi \cdot 0.001 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 5 \mathrm{~m} \cdot 6 \mathrm{~m}}+\frac{7 \mathrm{~m}-6 \mathrm{~m}}{4 \cdot \pi \cdot 0.002 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 6 \mathrm{~m} \cdot 7 \mathrm{~m}}$
10) Total Thermal Resistance of Spherical wall of 3 Layers without Convection
$\mathrm{fx} \mathrm{R}_{\mathrm{tr}}=\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{4 \cdot \pi \cdot \mathrm{k}_{1} \cdot \mathrm{r}_{1} \cdot \mathrm{r}_{2}}+\frac{\mathrm{r}_{3}-\mathrm{r}_{2}}{4 \cdot \pi \cdot \mathrm{k}_{2} \cdot \mathrm{r}_{2} \cdot \mathrm{r}_{3}}+\frac{\mathrm{r}_{4}-\mathrm{r}_{3}}{4 \cdot \pi \cdot \mathrm{k}_{3} \cdot \mathrm{r}_{3} \cdot \mathrm{r}_{4}}$
$3.95519 \mathrm{~K} / \mathrm{W}=\frac{6 \mathrm{~m}-5 \mathrm{~m}}{4 \cdot \pi \cdot 0.001 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 5 \mathrm{~m} \cdot 6 \mathrm{~m}}+\frac{7 \mathrm{~m}-6 \mathrm{~m}}{4 \cdot \pi \cdot 0.002 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 6 \mathrm{~m} \cdot 7 \mathrm{~m}}+\frac{8 \mathrm{~m}-7 \mathrm{~m}}{4 \cdot \pi \cdot 0.004 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right.}$
11) Total Thermal Resistance of Spherical Wall with Convection on Both Side
$\mathrm{fx} \mathrm{R}_{\mathrm{tr}}=\frac{1}{4 \cdot \pi \cdot \mathrm{r}_{1}^{2} \cdot \mathrm{~h}_{\mathrm{i}}}+\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{4 \cdot \pi \cdot \mathrm{k} \cdot \mathrm{r}_{1} \cdot \mathrm{r}_{2}}+\frac{1}{4 \cdot \pi \cdot \mathrm{r}_{2}^{2} \cdot \mathrm{~h}_{\mathrm{o}}}$
ex
$3.957069 \mathrm{~K} / \mathrm{W}=\frac{1}{4 \cdot \pi \cdot(5 \mathrm{~m})^{2} \cdot 0.001038 \mathrm{~W} / \mathrm{m}^{2} * \mathrm{~K}}+\frac{6 \mathrm{~m}-5 \mathrm{~m}}{4 \cdot \pi \cdot 2 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 5 \mathrm{~m} \cdot 6 \mathrm{~m}}+\frac{1}{4 \cdot \pi \cdot(6 \mathrm{~m})^{2} \cdot 0.002486 \mathrm{~V}}$

Variables Used

- h Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- $\mathbf{h}_{\mathbf{i}}$ Inner Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- $\mathbf{h}_{\mathbf{o}}$ External Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- \mathbf{k} Thermal Conductivity (Watt per Meter per K)
- \mathbf{k}_{1} Thermal Conductivity of 1st Body (Watt per Meter per K)
- $\mathbf{k}_{\mathbf{2}}$ Thermal Conductivity of 2nd Body (Watt per Meter per K)
- \mathbf{k}_{3} Thermal Conductivity of 3rd Body (Watt per Meter per K)
- Q Heat Flow Rate (Watt)
- Q' Heat Flow Rate of wall of 2 layers (Watt)
- r Radius of Sphere (Meter)
- \mathbf{r}_{1} Radius of 1st Concentric Sphere (Meter)
- $\mathbf{r}_{\mathbf{2}}$ Radius of 2nd Concentric Sphere (Meter)
- \mathbf{r}_{3} Radius of 3rd Concentric Sphere (Meter)
- \mathbf{r}_{4} Radius of 4th Concentric Sphere (Meter)
- \mathbf{r}_{th} Thermal Resistance of Sphere Without Convection (Kelvin per Watt)
- $\mathbf{R}_{\text {th }}$ Thermal Resistance of Sphere (Kelvin per Watt)
- \mathbf{r}_{tr} Sphere Thermal Resistance Without Convection (Kelvin per Watt)
- $\mathbf{R}_{\text {tr }}$ Sphere Thermal Resistance (Kelvin per Watt)
- t Thickness Of Conduction Sphere (Meter)
- $\mathbf{T}_{\mathbf{i}}$ Inner Surface Temperature (Kelvin)
- $\mathbf{T}_{\mathbf{0}}$ Outer Surface Temperature (Kelvin)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Temperature in Kelvin (K)

Temperature Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Thermal Resistance in Kelvin per Watt (K/W)

Thermal Resistance Unit Conversion

- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))

Thermal Conductivity Unit Conversion

- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K) Heat Transfer Coefficient Unit Conversion

Check other formula lists

- Conduction in Cylinder Formulas
- Conduction in Plane Wall Formulas
- Conduction in Sphere Formulas
- Conduction Shape Factors for Different Configurations Formulas
- Other shapes Formulas
- Steady State Heat Conduction with Heat Generation Formulas
- Transient Heat Conduction Formulas \longleftarrow

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

