Climbing Flight Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Climbing Flight Formulas

\section*{Climbing Flight | \star |
| :---: |}

1) Centrifugal Force in Accelerated Flight
$f_{\mathrm{x}} \mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{L}}+\mathrm{T} \cdot \sin \left(\sigma_{\mathrm{T}}\right)-\mathrm{m} \cdot[\mathrm{g}] \cdot \cos (\gamma)$
Open Calculator
ex $28.03926 \mathrm{~N}=200 \mathrm{~N}+700 \mathrm{~N} \cdot \sin (0.034 \mathrm{rad})-20 \mathrm{~kg} \cdot[\mathrm{~g}] \cdot \cos (0.062 \mathrm{rad})$
2) Drag in Accelerated Flight
$f \mathbf{x} \mathrm{~F}_{\mathrm{D}}=\mathrm{T} \cdot \cos \left(\sigma_{\mathrm{T}}\right)-\mathrm{m} \cdot[\mathrm{g}] \cdot \sin (\gamma)-\mathrm{m} \cdot \mathrm{a}$
Open Calculator
ex $80.04298 \mathrm{~N}=700 \mathrm{~N} \cdot \cos (0.034 \mathrm{rad})-20 \mathrm{~kg} \cdot[\mathrm{~g}] \cdot \sin (0.062 \mathrm{rad})-20 \mathrm{~kg} \cdot 30.37 \mathrm{~m} / \mathrm{s}^{2}$
3) Excess power \preceq
$f x P_{\text {excess }}=v \cdot\left(T-F_{D}\right)$
ex $37197.6 \mathrm{~W}=60 \mathrm{~m} / \mathrm{s} \cdot(700 \mathrm{~N}-80.04 \mathrm{~N})$
4) Excess power for given rate of climb
$f x P_{\text {excess }}=R C \cdot W$
ex $37197.6 \mathrm{~W}=3.71976 \mathrm{~m} / \mathrm{s} \cdot 10000 \mathrm{~N}$
5) Flight path angle at given rate of climb
$f \mathbf{x} \gamma=a \sin \left(\frac{\mathrm{RC}}{\mathrm{v}}\right)$
Open Calculator
ex $0.062036 \mathrm{rad}=a \sin \left(\frac{3.71976 \mathrm{~m} / \mathrm{s}}{60 \mathrm{~m} / \mathrm{s}}\right)$
6) Lift in Accelerated Flight
$f \mathbf{f x} \mathrm{~F}_{\mathrm{L}}=\mathrm{m} \cdot[\mathrm{g}] \cdot \cos (\gamma)+\mathrm{m} \cdot \frac{\mathrm{v}^{2}}{\mathrm{R}_{\text {curvature }}}-\mathrm{T} \cdot \sin \left(\sigma_{\mathrm{T}}\right)$
Open Calculator
ex $199.653 \mathrm{~N}=20 \mathrm{~kg} \cdot[\mathrm{~g}] \cdot \cos (0.062 \mathrm{rad})+20 \mathrm{~kg} \cdot \frac{(60 \mathrm{~m} / \mathrm{s})^{2}}{2600 \mathrm{~m}}-700 \mathrm{~N} \cdot \sin (0.034 \mathrm{rad})$

7) Rate of Climb

fx $\mathrm{RC}=\mathrm{v} \cdot \sin (\gamma)$
ex $3.717617 \mathrm{~m} / \mathrm{s}=60 \mathrm{~m} / \mathrm{s} \cdot \sin (0.062 \mathrm{rad})$
8) Rate of Climb for given excess power
$f \mathrm{fx}=\frac{\mathrm{P}_{\text {excess }}}{\mathrm{W}}$
Open Calculator ${ }^{2}$
ex $3.71976 \mathrm{~m} / \mathrm{s}=\frac{37197.6 \mathrm{~W}}{10000 \mathrm{~N}}$
9) Rate of Climb of Aircraft
$f \mathbf{x} \mathrm{RC}=\frac{\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{r}}}{\mathrm{W}}$
ex $3.7199 \mathrm{~m} / \mathrm{s}=\frac{38199 \mathrm{~W}-1000 \mathrm{~W}}{10000 \mathrm{~N}}$
10) Thrust available for given excess power
$f \mathrm{fx}=\mathrm{F}_{\mathrm{D}}+\left(\frac{\mathrm{P}_{\text {excess }}}{\mathrm{v}}\right)$
ex $700 \mathrm{~N}=80.04 \mathrm{~N}+\left(\frac{37197.6 \mathrm{~W}}{60 \mathrm{~m} / \mathrm{s}}\right)$
11) Thrust in Accelerated Flight
$f \mathbf{f x} T=\left(\sec \left(\sigma_{\mathrm{T}}\right)\right) \cdot\left(\mathrm{F}_{\mathrm{D}}+(\mathrm{m} \cdot[\mathrm{g}] \cdot \sin (\gamma))+(\mathrm{m} \cdot \mathrm{a})\right)$
Open Calculator

ex

$699.997 \mathrm{~N}=(\sec (0.034 \mathrm{rad})) \cdot\left(80.04 \mathrm{~N}+(20 \mathrm{~kg} \cdot[\mathrm{~g}] \cdot \sin (0.062 \mathrm{rad}))+\left(20 \mathrm{~kg} \cdot 30.37 \mathrm{~m} / \mathrm{s}^{2}\right)\right)$
12) Total Drag for given Excess Power
$f \mathrm{f} \mathrm{F}_{\mathrm{D}}=\mathrm{T}-\left(\frac{\mathrm{P}_{\text {excess }}}{\mathrm{v}}\right)$
ex $80.04 \mathrm{~N}=700 \mathrm{~N}-\left(\frac{37197.6 \mathrm{~W}}{60 \mathrm{~m} / \mathrm{s}}\right)$
13) Velocity in Accelerated Flight
$f \mathbf{x} \mathbf{v}=\left(\frac{\mathrm{R}_{\text {curvature }}}{\mathrm{m}} \cdot\left(\mathrm{F}_{\mathrm{L}}+\mathrm{T} \cdot \sin \left(\sigma_{\mathrm{T}}\right)-\mathrm{m} \cdot[\mathrm{g}] \cdot \cos (\gamma)\right)\right)^{\frac{1}{2}}$
Open Calculator
ex
$60.3747 \mathrm{~m} / \mathrm{s}=\left(\frac{2600 \mathrm{~m}}{20 \mathrm{~kg}} \cdot(200 \mathrm{~N}+700 \mathrm{~N} \cdot \sin (0.034 \mathrm{rad})-20 \mathrm{~kg} \cdot[\mathrm{~g}] \cdot \cos (0.062 \mathrm{rad}))\right)^{\frac{1}{2}}$
14) Velocity of aircraft at given rate of climb
$\mathrm{fx} \mathrm{v}=\frac{\mathrm{RC}}{\sin (\gamma)}$
Open Calculator
ex $60.03458 \mathrm{~m} / \mathrm{s}=\frac{3.71976 \mathrm{~m} / \mathrm{s}}{\sin (0.062 \mathrm{rad})}$
15) Velocity of Aircraft for given Excess Power

$$
f \mathrm{x} v=\frac{\mathrm{P}_{\text {excess }}}{\mathrm{T}-\mathrm{F}_{\mathrm{D}}}
$$

ex $60 \mathrm{~m} / \mathrm{s}=\frac{37197.6 \mathrm{~W}}{700 \mathrm{~N}-80.04 \mathrm{~N}}$
16) Weight of Aircraft for given Excess Power
$f \mathrm{x} W=\frac{\mathrm{P}_{\text {excess }}}{\mathrm{RC}}$
ex $10000 \mathrm{~N}=\frac{37197.6 \mathrm{~W}}{3.71976 \mathrm{~m} / \mathrm{s}}$

Variables Used

- a Acceleration (Meter per Square Second)
- $\mathbf{F}_{\mathbf{c}}$ Centrifugal Force (Newton)
- F_{D} Drag Force (Newton)
- FL Lift Force (Newton)
- m Mass of Aircraft (Kilogram)
- $\mathbf{P a}_{\mathbf{a}}$ Power Available (Watt)
- Pexcess Excess Power (Watt)
- P_{r} Power Required (Watt)
- $\mathbf{R}_{\text {curvature }}$ Radius of Curvature (Meter)
- RC Rate of Climb (Meter per Second)
- T Thrust (Newton)
- v Velocity (Meter per Second)
- W Aircraft Weight (Newton)
- Y Flight Path Angle (Radian)
- $\sigma_{\mathbf{T}}$ Thrust Angle (Radian)

Constants, Functions, Measurements used

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sec, sec(Angle)

Secant is a trigonometric function that is defined ratio of the hypotenuse to the shorter side adjacent to an acute angle (in a right-angled triangle); the reciprocal of a cosine.

- Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion 〕

- Measurement: Acceleration in Meter per Square Second ($\mathrm{m} / \mathrm{s}^{2}$)

Acceleration Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Radian (rad)

Angle Unit Conversion

Check other formula lists

- Climbing Flight Formulas
- Range and Endurance Formulas
- Take-off and Landing Formulas
- Turning Flight Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

