

Turning Flight Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 13 Turning Flight Formulas

Turning Flight 🕑

4) Load factor given Lift Force and Weight of Aircraft 🕑

7) Rate of Turn
$$\checkmark$$

 $\omega = 1091 \cdot \frac{\tan(\Phi)}{V}$
ex 1.355595 degree/s = $1091 \cdot \frac{\tan(0.45 \operatorname{rad})}{200 \operatorname{m/s}}$
8) Turn radius \checkmark
8) Turn radius \checkmark
fx $R = \frac{V^2}{[g] \cdot \sqrt{(n^2) - 1}}$
ex $8466.458 \operatorname{m} = \frac{(200 \operatorname{m/s})^2}{[g] \cdot \sqrt{((1.11)^2) - 1}}$
9) Turn rate \checkmark
 $\omega = [g] \cdot \frac{\sqrt{n^2 - 1}}{V}$
 $\sqrt{(1.11)^2 - 1}$

ex 1.353477degree/s = [g]
$$\cdot \frac{\sqrt{(1.11)^2 - 1}}{200 \text{m/s}}$$

10) Velocity for given turn radius

fx
$$\mathbf{V} = \sqrt{\mathbf{R} \cdot [\mathbf{g}] \cdot \left(\sqrt{\mathbf{n}^2 - 1}\right)}$$

ex $200 \mathrm{m/s} = \sqrt{8466.46 \mathrm{m} \cdot [\mathbf{g}] \cdot \left(\sqrt{(1.11)^2 - 1}\right)}$

11) Velocity for given turn rate 🕑

fx
$$V = [g] \cdot rac{\sqrt{n^2-1}}{\omega}$$

ex 199.0407m/s = [g]
$$\cdot \frac{\sqrt{(1.11)^2 - 1}}{1.36 \text{degree/s}}$$

12) Weight for given Load Factor 🕑

fx
$$W = \frac{F_L}{n}$$

ex
$$18.01802$$
N $= \frac{20N}{1.11}$

13) Weight of aircraft during level turn 🕑

fx
$$\mathrm{W} = \mathrm{F}_{\mathrm{L}} \cdot \cos(\Phi)$$

ex
$$18.00894$$
N = 20 N · cos(0.45rad)

Open Calculator

Open Calculator

Open Calculator 🕑

Open Calculator 🕑

Variables Used

- **F**_L Lift Force (Newton)
- **n** Load Factor
- **R** Turn Radius (Meter)
- V Flight Velocity (Meter per Second)
- W Aircraft Weight (Newton)
- **Φ** Bank Angle (Radian)
- ω Turn Rate (Degree per Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: acos, acos(Number) The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Angular Velocity in Degree per Second (degree/s) Angular Velocity Unit Conversion

Check other formula lists

- Climbing Flight Formulas 🖸
- Range and Endurance
 Formulas
- Take-off and Landing Formulas
- Turning Flight Formulas C

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/24/2024 | 8:38:58 AM UTC

Please leave your feedback here...