

Projectile Motion Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 10 Projectile Motion Formulas

Projectile Motion 🕑

1) Height of Object given Horizontal Distance 🕑

fx
$$\mathbf{v} = \mathrm{R} \cdot \mathrm{tan}ig(\mathbf{ heta}_{\mathrm{pr}} ig) - rac{\mathrm{g} \cdot \mathrm{R}^2}{2 \cdot ig(\mathrm{u} \cdot \mathrm{cos}ig(\mathbf{ heta}_{\mathrm{pr}} ig) ig)^2}$$

ex
$$0.826726 \mathrm{m} = 2 \mathrm{m} \cdot \mathrm{tan}(0.4 \mathrm{rad}) - rac{9.8 \mathrm{m/s^2} \cdot (2 \mathrm{m})^2}{2 \cdot (35 \mathrm{m/s} \cdot \mathrm{cos}(0.4 \mathrm{rad}))^2}$$

2) Initial Speed given Maximum Height 🕑

$$f = \frac{\sqrt{H_{max} \cdot 2 \cdot g}}{\sin(\theta_{pr})}$$

$$e = \frac{\sqrt{H_{max} \cdot 2 \cdot g}}{\sin(\theta_{pr})}$$

$$f = \frac{\sqrt{9.48m \cdot 2 \cdot 9.8m/s^2}}{\sin(0.4rad)}$$

$$f = \frac{T \cdot g}{2 \cdot \sin(\theta_{pr})}$$

$$f = \frac{T \cdot g}{2 \cdot \sin(\theta_{pr})}$$

$$f = \frac{2.78156s \cdot 9.8m/s^2}{2 \cdot \sin(0.4rad)}$$

Open Calculator

~

7) Maximum Range of Flight for Inclined Projectile 🕑

$$egin{aligned} \kappa \ \mathbf{R}_{\mathrm{motion}} &= rac{\mathrm{u}^2 \cdot ig(1 - \sinig(lpha_{\mathrm{pl}} ig) ig)}{\mathrm{g} \cdot ig(\cosig(lpha_{\mathrm{pl}} ig) ig)^2 } \end{aligned}$$

$$89.66881 \mathrm{m} = \frac{(35 \mathrm{m/s})^2 \cdot (1 - \sin(0.405 \mathrm{rad}))}{9.8 \mathrm{m/s^2} \cdot (\cos(0.405 \mathrm{rad}))^2}$$

8) Range of Projectile Motion

fx
$$\mathrm{R_{motion}} = rac{\mathrm{u}^2 \cdot \mathrm{sin} ig(2 \cdot \mathrm{ heta_{pr}} ig)}{\mathrm{g}}$$

ex
$$89.66951 \text{m} = rac{(35 \text{m/s})^2 \cdot \sin(2 \cdot 0.4 \text{rad})}{9.8 \text{m/s}^2}$$

9) Time of Flight

$$\mathbf{fx} \mathbf{T} = \frac{2 \cdot \mathbf{u} \cdot \sin(\theta_{\rm pr})}{g}$$

$$\mathbf{ex} 2.78156s = \frac{2 \cdot 35m/s \cdot \sin(0.4rad)}{9.8m/s^2}$$

Open Calculator 🕑

Open Calculator

Open Calculator

10) Time of Flight for Inclined Projectile 🕑

$$\begin{aligned} & \textbf{fx} \ensuremath{\left[\textbf{T} = \frac{2 \cdot \textbf{u} \cdot \sin(\theta_{inclination})}{\textbf{g} \cdot \cos(\alpha_{pl})} \ensuremath{\right]} \\ & \textbf{ex} \ensuremath{\left[2.902106 \text{s} = \frac{2 \cdot 35 \text{m/s} \cdot \sin(0.3827 \text{rad})}{9.8 \text{m/s}^2 \cdot \cos(0.405 \text{rad})} \ensuremath{\right]} \end{aligned}$$

Open Calculator 🕑

Variables Used

- g Acceleration due to Gravity (Meter per Square Second)
- Hmax Maximum Height (Meter)
- R Horizontal Distance (Meter)
- Rmotion Range of Motion (Meter)
- **T** Time of Flight (Second)
- U Initial Velocity (Meter per Second)
- V Height of Crack (Meter)
- Vmax Maximum Height of Crack (Meter)
- α_{pl} Angle of Plane (Radian)
- **θ**inclination Angle of Inclination (Radian)
- θ_{pr} Angle of Projection (*Radian*)

Constants, Functions, Measurements used

- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) • Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion

7/8

Check other formula lists

Kinematics Formulas

Projectile Motion Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/7/2024 | 6:58:06 AM UTC

Please leave your feedback here ...