

Peak Drainage Discharge Formula Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Peak Drainage Discharge Formula Formulas

Peak Drainage Discharge Formula 🗗

Peak Drainage Discharge by Empirical Formula 🗗

Burkli Ziegler Formula

1) Drainage Area for Peak Rate of Runoff

$$\mathbf{K} \mathbf{A}_{\mathrm{D}} = \left(rac{\mathbf{Q}_{\mathrm{BZ}} \cdot 455}{\mathbf{K}' \cdot \mathbf{I}_{\mathrm{BZ}} \cdot \sqrt{\mathbf{S}_{\mathrm{o}}}}
ight)^{2}$$

Open Calculator 🗗

2) Maximum Rainfall Intensity given Peak Rate of Runoff

$$I_{
m BZ} = 455 \cdot rac{
m Q_{BZ}}{
m K' \cdot \sqrt{
m S_o \cdot A_D}}$$

Open Calculator

$$ext{ex} \ 0.002083 ext{cm/h} = 455 \cdot rac{1.34 ext{m}^3/ ext{s}}{251878.2 \cdot \sqrt{0.045 \cdot 30 ext{ha}}}$$

3) Peak Rate of Runoff from Burkli-Ziegler Formula

Open Calculator 2

$$egin{aligned} \mathbf{R} \ \mathbf{Q}_{\mathrm{BZ}} = \left(rac{\mathrm{K'}\cdot\mathrm{I}_{\mathrm{BZ}}\cdot\mathrm{A}_{\mathrm{D}}}{455}
ight)\cdot\sqrt{rac{\mathrm{S}_{\mathrm{o}}}{\mathrm{A}_{\mathrm{D}}}} \end{aligned}$$

4) Runoff Coefficient for Peak Rate of Runoff

$$\text{fx} | \text{K'} = \frac{455 \cdot Q_{BZ}}{I_{BZ} \cdot \sqrt{S_o \cdot A_D}}$$

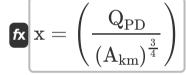
Open Calculator 2

$$ext{ex} 251878.2 = rac{455 \cdot 1.34 ext{m}^3/ ext{s}}{7.5 ext{cm/h} \cdot \sqrt{0.045 \cdot 30 ext{ha}}}$$

5) Slope of Ground Surface given Peak Rate of Runoff

$$\mathbf{F}_{\mathrm{o}} = \left(rac{\mathrm{Q}_{\mathrm{BZ}}\cdot 455}{\mathrm{I}_{\mathrm{BZ}}\cdot \mathrm{K'}\cdot \sqrt{\mathrm{A}_{\mathrm{D}}}}
ight)^{2}$$

$$oxed{0.045} = \left(rac{1.34 {
m m}^3/{
m s} \cdot 455}{7.5 {
m cm/h} \cdot 251878.2 \cdot \sqrt{30 {
m ha}}}
ight)^2$$


Dicken's Formula

6) Catchment Area given Peak Rate of Runoff

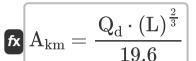
$$\mathbf{A}_{\mathrm{km}} = \left(rac{\mathrm{Q}_{\mathrm{PD}}}{\mathrm{x}}
ight)^{rac{4}{3}}$$

ex
$$2.5 \mathrm{km^2} = \left(\frac{628716.7 \mathrm{m^3/s}}{10} \right)^{\frac{4}{3}}$$

7) Factors Dependent Constant given Peak Rate of Runoff

ex
$$10 = \left(rac{628716.7 ext{m}^3/ ext{s}}{\left(2.5 ext{km}^2
ight)^{rac{3}{4}}}
ight)$$

8) Peak Rate Runoff from Dicken's Formula 🗗


$$\mathbf{K} \mathbf{Q}_{\mathrm{PD}} = \mathbf{x} \cdot (\mathbf{A}_{\mathrm{km}})^{rac{3}{4}}$$

$$ext{ex} \ 628716.7 ext{m}^3/ ext{s} = 10 \cdot (2.5 ext{km}^2)^{rac{3}{4}}$$

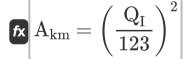
Dredge or Burge's Formula

9) Catchment Area given Peak Rate of Runoff from Dredge Formula

Open Calculator 🗗

ex
$$2.5 \text{km}^2 = \frac{212561.2 \text{m}^3/\text{s} \cdot (3.5 \text{km})^{\frac{2}{3}}}{10.6}$$

10) Peak Rate of Runoff from Dredge Formula



Open Calculator

ex
$$212561.2 \mathrm{m}^3/\mathrm{s} = 19.6 \cdot \left(rac{2.5 \mathrm{km}^2}{(3.5 \mathrm{km})^{rac{2}{3}}}
ight)$$

Inglis Formula 🗗

11) Catchment Area given Peak Rate of Runoff from Inglis Formula

Open Calculator 🗗

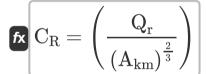
$$ext{ex} \left[2.499998 ext{km}^2 = \left(rac{194.48 ext{m}^3/ ext{s}}{123}
ight)^2
ight]$$

12) Peak Rate of Runoff from Inglis Formula Approximate

Open Calculator 🚰

ex $194.4801 \mathrm{m}^3/\mathrm{s} = 123 \cdot \sqrt{2.5 \mathrm{km}^2}$

Nawab Jung Bahadur Formula 🗗



Open Calculator 🗗

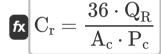
ex $125.6423 \mathrm{m}^3/\mathrm{s} = 55 \cdot (2.5 \mathrm{km}^2)^{0.93 - (rac{1}{14}) \cdot \log 10 (2.5 \mathrm{km}^2)}$

Ryve's Formula 🗗

14) Factors Dependent Constant from Ryve's Formula

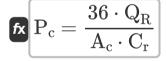
Open Calculator

$$oxed{ex} 6.786044 = \left(rac{125000 \mathrm{m}^3/\mathrm{s}}{\left(2.5 \mathrm{km}^2
ight)^{rac{2}{3}}}
ight)$$


Peak Drainage Discharge by Rational Formula 🗗

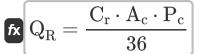
15) Catchment Area given Peak Rate of Runoff and Rainfall Intensity

$$\mathbf{A}_{\mathrm{c}} = rac{36 \cdot \mathrm{Q_R}}{\mathrm{C_r} \cdot \mathrm{P_c}}$$


$$\boxed{ 14.92539 ha = \frac{36 \cdot 4166.67 m^3/s}{0.5 \cdot 2.01 cm/h} }$$

16) Coefficient of Runoff given Peak Rate of Runoff

$$0.497513 = rac{36 \cdot 4166.67 ext{m}^3/ ext{s}}{15 ext{ha} \cdot 2.01 ext{cm/h}}$$


17) Critical Rainfall Intensity for Peak Rate of Runoff

$$ext{ex} \ 2.000002 ext{cm/h} = rac{36 \cdot 4166.67 ext{m}^3/ ext{s}}{15 ext{ha} \cdot 0.5}$$

18) Peak Rate of Runoff in Rational Formula 🚰

Open Calculator 🗗

$$ext{ex} egin{aligned} ext{4187.5m}^3/ ext{s} &= rac{0.5 \cdot 15 ext{ha} \cdot 2.01 ext{cm/h}}{36} \end{aligned}$$

Variables Used

- A_c Area of Catchment (Hectare)
- An Drainage Area (Hectare)
- A_{km} Catchment Area in KM (Square Kilometer)
- C₂ Coefficient
- C_r Runoff Coefficient
- C_R Ryve's Coefficient
- I_{BZ} Intensity of Rainfall in Burkli Zeigler (Centimeter per Hour)
- K' Runoff Coefficient for Burkli Zeigler
- L Length of Drain (Kilometer)
- Pc Critical Rainfall Intensity (Centimeter per Hour)
- QBZ Peak Rate of Runoff for Burkli Zeigler (Cubic Meter per Second)
- Q_d Peak Rate of Runoff from Dredge Formula (Cubic Meter per Second)
- Q_I Peak Rate of Runoff for Inglish (Cubic Meter per Second)
- Q_{NJB} Peak Rate of Runoff for Nawab Jung Bahadur (Cubic Meter per Second)
- QPD Peak Rate of Runoff from Dickens Formula (Cubic Meter per Second)
- Q_r Peak Rate of Runoff in ryves formula (Cubic Meter per Second)
- Q_R Peak Drainage Discharge by Rational Formula (Cubic Meter per Second)
- S_o Slope of the ground
- X Constant

Constants, Functions, Measurements used

- Function: log10, log10(Number)

 The common logarithm, also known as the base-10 logarithm or the decimal logarithm, is a mathematical function that is the inverse of the exponential function.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Kilometer (km)
 Length Unit Conversion
- Measurement: Area in Hectare (ha), Square Kilometer (km²)
 Area Unit Conversion
- Measurement: Speed in Centimeter per Hour (cm/h)
 Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

Peak Drainage Discharge Formula
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/16/2024 | 8:05:29 AM UTC

Please leave your feedback here...

