

Specific Gravity and Density Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Specific Gravity and Density Formulas

Density of Fluid

1) Mass Density of Fluid given Frictional Drag

$$ho_{
m liquid} = rac{2 \cdot F_{
m D}}{{
m C_d} \cdot {
m A_{cs}} \cdot {
m V_s^2}}$$

Open Calculator

$$= \frac{2 \cdot 80 \mathrm{N}}{0.11 \cdot 13 \mathrm{m}^2 \cdot \left(1.5 \mathrm{m/s}\right)^2}$$

Density of Particle

2) Mass Density of Particle given Impelling Force

$$\left|
ho_{p} = \left(rac{F}{[g] \cdot V_{p}}
ight) +
ho_{liquid}
ight|$$

$$extstyle extstyle ext$$

3) Mass Density of Particle given Settling Velocity with respect to Dynamic Viscosity

 $ho_{
m m} = \left(18 \cdot V_{
m s} \cdot rac{\mu_{
m viscosity}}{D^2} \cdot [g]
ight) +
ho_{
m liquid}$

Open Calculator 🗗

 $ext{ex} \left[51.24355 ext{kg/m}^3 = \left(18 \cdot 1.5 ext{m/s} \cdot rac{49 ext{P}}{\left(20 ext{m}
ight)^2} \cdot [ext{g}]
ight) + 48 ext{kg/m}^3
ight]$

Specific Gravity of Fluid 2

4) Specific Gravity of Fluid for Temperature given Fahrenheit and Diameter greater than 0.1mm

 $\mathbf{fx} oxed{\mathrm{G_f} = \mathrm{G} - \left(\mathrm{V_s} \cdot rac{60}{418} \cdot \mathrm{d} \cdot (\mathrm{T_F} + 10)
ight)}$

Open Calculator 🗗

 $oxed{ex} 12.4928 = 16 - \left(1.5 ext{m/s} \cdot rac{60}{418} \cdot 0.06 ext{m} \cdot (11 ext{°F} + 10)
ight)$

5) Specific Gravity of Fluid given Settling Velocity at 10 Degree Celsius

Open Calculator

ex $15.99999 = 16 - \left(\frac{1.5 \text{m/s}}{418} \cdot (0.06 \text{m})^2\right)$

6) Specific Gravity of Fluid given Settling Velocity calculated in Fahrenheit

 $\mathbf{G}_{\mathrm{f}} = \mathrm{G} - \left(rac{\mathrm{V}_{\mathrm{s}}}{418}\cdot\mathrm{d}^2\cdot\left(rac{\mathrm{t}_{\mathrm{o}}+10}{60}
ight)
ight)$

Open Calculator 🗗

 $\boxed{ 15.99994 = 16 - \left(\frac{1.5 \text{m/s}}{418} \cdot (0.06 \text{m})^2 \cdot \left(\frac{273 \text{K} + 10}{60} \right) \right) }$

7) Specific Gravity of Fluid given Settling Velocity given Celsius

 $\mathbf{G}_{\mathrm{f}} = \mathrm{G} - \left(\mathrm{V}_{\mathrm{s}} \cdot rac{100}{418} \cdot \mathrm{d}^2 \cdot (3 \cdot \mathrm{t} + 70)
ight)$

Open Calculator

 $\boxed{15.52976 = 16 - \left(1.5 \text{m/s} \cdot \frac{100}{418} \cdot (0.06 \text{m})^2 \cdot (3 \cdot 98 + 70)\right) }$

8) Specific Gravity of Fluid given Settling Velocity with respect to Kinematic Viscosity

 $\mathbf{G}_{\mathrm{f}} = \mathrm{G} - \left(\mathrm{V}_{\mathrm{s}} \cdot 18 \cdot rac{\mathrm{v}}{[\mathrm{g}]} \cdot \mathrm{d}^2
ight)$

Open Calculator 🗗

 $\boxed{ 15.99999 = 16 - \left(1.5 \text{m/s} \cdot 18 \cdot \frac{7.25 \text{St}}{[\text{g}]} \cdot (0.06 \text{m})^2 \right) }$

Specific Gravity of Particle 🗗

9) Specific Gravity of Particle for Temperature given Celsius and diameter greater than 0.1mm

fx

Open Calculator 🗗

$$\mathrm{G} = \mathrm{G_f} + \left(\mathrm{V_s} \cdot rac{100}{418} \cdot \mathrm{D_{particle}} \cdot \left(3 \cdot \mathrm{T_F} + 70
ight)
ight)$$

 $\boxed{ 19.54426 = 14 + \left(1.5 \text{m/s} \cdot \frac{100}{418} \cdot 0.15 \cdot (3 \cdot 11 \degree \text{F} + 70) \right) }$

10) Specific Gravity of Particle for temperature given Fahrenheit and diameter greater than 0.1mm

 $ag{G} = ext{G}_{ ext{f}} + \left(ext{V}_{ ext{s}} \cdot rac{60}{ ext{118}} \cdot ext{D}_{ ext{particle}} \cdot (ext{T}_{ ext{F}} + 10)
ight)$

ex $22.768 = 14 + \left(1.5 \text{m/s} \cdot \frac{60}{418} \cdot 0.15 \cdot (11 \, ^{\circ}\text{F} + 10)\right)$

Open Calculator 🗗

11) Specific Gravity of Particle given Displacement Velocity by Camp

 $ho_{
m p} = \left({
m v}_{
m d}^2 \cdot rac{{
m f}}{8 \cdot [{
m g}] \cdot {
m b} \cdot {
m d}}
ight) + 1$

$$\boxed{ 0.000318 \mathrm{g/mm^3} = \left((0.0288 \mathrm{m/s})^2 \cdot \frac{0.5}{8 \cdot [\mathrm{g}] \cdot 10 \cdot 0.06 \mathrm{m}} \right) + 1 }$$

12) Specific Gravity of Particle given Settling Velocity at 10 degree Celsius

$$\mathbf{G} = \mathbf{G}_{\mathrm{f}} + \left(rac{\mathbf{V}_{\mathrm{s}}}{418}\cdot\mathrm{d}^2
ight)$$

Open Calculator 🚰

ex
$$14.00001 = 14 + \left(\frac{1.5 \text{m/s}}{418} \cdot (0.06 \text{m})^2\right)$$

13) Specific Gravity of Particle given Settling Velocity calculated in Fahrenheit

 $\mathbf{G} = G_{\mathrm{f}} + \left(rac{V_{\mathrm{s}}}{418} \cdot \mathrm{d}^2 \cdot \left(rac{t_{\mathrm{o}} + 10}{60}
ight)
ight)$

Open Calculator

$$extbf{ex} \left[14.00006 = 14 + \left(rac{1.5 ext{m/s}}{418} \cdot (0.06 ext{m})^2 \cdot \left(rac{273 ext{K} + 10}{60}
ight)
ight)$$

14) Specific Gravity of Particle given Settling Velocity given Celsius 🗹

$$\mathrm{G} = \mathrm{G_f} + \left(\mathrm{V_s} \cdot rac{100}{418} \cdot \mathrm{D_{particle}^2} \cdot (3 \cdot \mathrm{t} + 70)
ight)$$

15) Specific Gravity of Particle given Settling Velocity with respect to Kinematic Viscosity

 $\left|\mathbf{G} = \left(18 \cdot V_{\mathrm{s}} \cdot rac{\mathrm{v}}{\left[\mathrm{g}
ight]} \cdot \mathrm{d}^{2}
ight) + G_{\mathrm{f}}
ight|$

Open Calculator 🚰

 $\boxed{ 14.00001 = \left(18 \cdot 1.5 \text{m/s} \cdot \frac{7.25 \text{St}}{[\text{g}]} \cdot (0.06 \text{m})^2 \right) + 14 }$

16) Specific Gravity of Particle given Settling Velocity with respect to Specific Gravity

 $\left| \mathbf{SG} \right| \mathbf{SG} = \left(rac{3 \cdot \mathrm{C_D} \cdot \mathrm{V_s^2}}{4 \cdot [\mathrm{g}] \cdot \mathrm{d}}
ight) + 1$

$$oxed{ex} 3442.542 = \left(rac{3 \cdot 1200 \cdot (1.5 ext{m/s})^2}{4 \cdot [ext{g}] \cdot 0.06 ext{m}}
ight) + 1$$

Variables Used

- A_{cs} Cross-Sectional Area (Square Meter)
- C_d Coefficient of Drag
- C_D Drag Coefficient
- d Diameter D (Meter)
- D Diameter (Meter)
- Dparticle Diameter of particle
- f Darcy Friction Factor
- F Impelling Force (Kilogram-Force)
- **F**_D Drag Force (Newton)
- G Specific Gravity of Particle
- G_f Specific Gravity of Fluid
- SG Specific Gravity of Material
- t Temperature
- T_F Temperature in Fahrenheit (Fahrenheit)
- **t**_o Outside Temperature (*Kelvin*)
- V_d Displacement Velocity (Meter per Second)
- V_p Volume of One Particle (Cubic Millimeter)
- V_s Settling Velocity (Meter per Second)
- β Beta Constant
- µviscosity Dynamic Viscosity (Poise)
- V Kinematic Viscosity (Stokes)
- Pliquid Liquid Density (Kilogram per Cubic Meter)

- ρ_m Mass Density of Particles (Kilogram per Cubic Meter)
- ρ_p Density of Particle (Gram per Cubic Millimeter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665
 Gravitational acceleration on Earth
- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Temperature in Fahrenheit (°F), Kelvin (K)
 Temperature Unit Conversion
- Measurement: Volume in Cubic Millimeter (mm³)
 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Newton (N), Kilogram-Force (kgf)
 Force Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: Mass Concentration in Kilogram per Cubic Meter (kg/m³)
 Mass Concentration Unit Conversion
- Measurement: Kinematic Viscosity in Stokes (St)
 Kinematic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³), Gram per Cubic Millimeter (g/mm³)
 Density Unit Conversion

Check other formula lists

- Diameter of Sediment Particle
 Formulas
- Displacement and Drag Formulas
- Sedimentation Tank Formulas
- Settling Velocity Formulas
- Settling Zone Formulas
- Specific Gravity and Density Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/7/2024 | 6:55:33 AM UTC

Please leave your feedback here...

