
calculatoratoz.com

unitsconverters.com

Sound Propagation and Resonance Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Sound Propagation and Resonance Formulas

Sound Propagation and Resonance ©

Resonance in Pipes

1) Frequency of 1st Harmonic Closed Organ Pipe
$\mathrm{fx} \mathrm{f}_{1 \text { st }}=\frac{1}{4} \cdot \frac{\mathrm{v}_{\mathrm{w}}}{\mathrm{L}_{\text {closed }}}$
ex $32.5 \mathrm{~Hz}=\frac{1}{4} \cdot \frac{65 \mathrm{~m} / \mathrm{s}}{0.5 \mathrm{~m}}$
2) Frequency of 2nd Harmonic Open Organ Pipe
$f \mathrm{f} \mathrm{f}_{2 \mathrm{nd}}=\frac{\mathrm{v}_{\mathrm{w}}}{L_{\text {open }}}$
ex $90.27778 \mathrm{~Hz}=\frac{65 \mathrm{~m} / \mathrm{s}}{0.72 \mathrm{~m}}$
Open Calculator
3) Frequency of 4th Harmonic Open Organ Pipe
$f \mathrm{fx} \mathrm{f}_{4 \text { th }}=2 \cdot \frac{\mathrm{~V}_{\mathrm{w}}}{\mathrm{L}_{\text {open }}}$
ex $180.5556 \mathrm{~Hz}=2 \cdot \frac{65 \mathrm{~m} / \mathrm{s}}{0.72 \mathrm{~m}}$
4) Frequency of Closed Organ Pipe
$f \times f_{\text {closed pipe }}=\frac{2 \cdot n+1}{4} \cdot \frac{\mathrm{v}_{\mathrm{w}}}{\mathrm{L}_{\text {closed }}}$
Open Calculator
$162.5=\frac{2 \cdot 2+1}{4} \cdot \frac{65 \mathrm{~m} / \mathrm{s}}{0.5 \mathrm{~m}}$
5) Frequency of Open Organ Pipe
$f_{\mathrm{x}} \mathrm{f}_{\text {open pipe }}=\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{v}_{\mathrm{w}}}{\mathrm{L}_{\text {open }}}$
Open Calculator
ex $90.27778=\frac{2}{2} \cdot \frac{65 \mathrm{~m} / \mathrm{s}}{0.72 \mathrm{~m}}$
6) Frequency of Open Organ Pipe for Nth Overtone
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{f}} \mathrm{open} \mathrm{pipe} \mathrm{,Nth} \mathrm{=} \frac{\mathrm{n}-1}{2} \cdot \frac{\mathrm{v}_{\mathrm{w}}}{\mathrm{L}_{\text {open }}}$
Open Calculator
ex $45.13889 \mathrm{~Hz}=\frac{2-1}{2} \cdot \frac{65 \mathrm{~m} / \mathrm{s}}{0.72 \mathrm{~m}}$
7) Length of Closed Organ Pipe

$\mathrm{ex} 0.5 \mathrm{~m}=(2 \cdot 2+1) \cdot \frac{0.4 \mathrm{~m}}{4}$
8) Length of Open Organ Pipe
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}_{\text {open }}=\frac{\mathrm{n}}{2} \cdot \frac{\mathrm{v}_{\mathrm{w}}}{\mathrm{f}}$
ex $0.722222 \mathrm{~m}=\frac{2}{2} \cdot \frac{65 \mathrm{~m} / \mathrm{s}}{90 \mathrm{~Hz}}$

Sound Propagation

10) Intensity of Sound $\sqrt{ }$

$f_{x} I_{s}=\frac{P}{A}$
ex $20 \mathrm{~W} / \mathrm{m}^{2}=\frac{900 \mathrm{~W}}{45 \mathrm{~m}^{2}}$

11) Velocity of Sound in Liquid $\sqrt{ }$

$f \mathbf{x} \mathrm{v}_{\text {speed }}=\sqrt{\frac{K}{\rho}}$
ex $1480 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{2183.83 \mathrm{MPa}}{997 \mathrm{~kg} / \mathrm{m}^{3}}}$
12) Velocity of Sound in Solids
$f \times v_{\text {speed }}=\sqrt{\frac{E}{\rho}}$
ex $1480.912 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{2186.52 \mathrm{MPa}}{997 \mathrm{~kg} / \mathrm{m}^{3}}}$

Variables Used

- A Normal Area (Square Meter)
- E Elasticity (Megapascal)
- f Frequency (Hertz)
- $\mathbf{f}_{1 \mathbf{s t}}$ Frequency of 1st Harmonic Closed Organ Pipe (Hertz)
- $\mathbf{f}_{\mathbf{2 n d}}$ Frequency of 2nd Harmonic Open Organ Pipe (Hertz)
- $\mathbf{f}_{3 r d}$ Frequency of 3rd Harmonic Closed Organ Pipe (Hertz)
- $\mathbf{f}_{4 \text { th }}$ Frequency of 4th Harmonic Open Organ Pipe (Hertz)
- $\mathbf{f}_{\text {closed pipe }}$ Frequency of Closed Organ Pipe
- $f_{\text {open pipe }}$ Frequency of Open Organ Pipe
- $\mathbf{f}_{\text {open }}$ pipe,Nth Frequency of Open Organ Pipe for Nth Overtone (Hertz)
- $\mathbf{I}_{\mathbf{S}}$ Sound Intensity (Watt per Square Meter)
- K Bulk Modulus (Megapascal)
- $L_{\text {closed }}$ Length of Closed Organ Pipe (Meter)
- Lopen Length of Open Organ Pipe (Meter)
- \mathbf{n} Number of Nodes
- P Power (Watt)
- $\mathbf{V}_{\text {speed }}$ Velocity of Sound (Meter per Second)
- $\mathbf{V}_{\mathbf{w}}$ Velocity of Wave (Meter per Second)
- $\boldsymbol{\lambda}$ Wavelength (Meter)
- $\boldsymbol{\rho}$ Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

- Measurement: Intensity in Watt per Square Meter (W/m²)

Intensity Unit Conversion

Check other formula lists

- Sound Propagation and Resonance Formulas $\sqrt{\boxed{Z}}$
- Wave Properties and Equations Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

