

Sound Propagation and Resonance Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Sound Propagation and Resonance Formulas

Sound Propagation and Resonance

Resonance in Pipes 🗗

1) Frequency of 1st Harmonic Closed Organ Pipe

$$\mathbf{f}_{1\mathrm{st}} = rac{1}{4} \cdot rac{\mathrm{v}_{\mathrm{w}}}{\mathrm{L}_{\mathrm{closed}}}$$

Open Calculator

$$\mathbf{ex} \boxed{32.5 \text{Hz} = \frac{1}{4} \cdot \frac{65 \text{m/s}}{0.5 \text{m}}}$$

2) Frequency of 2nd Harmonic Open Organ Pipe 🖸

$$f_{
m 2nd} = rac{v_{
m w}}{
m L_{
m open}}$$

Open Calculator

$$ext{ex} 90.27778 ext{Hz} = rac{65 ext{m/s}}{0.72 ext{m}}$$

3) Frequency of 3rd Harmonic Closed Organ Pipe

$$\mathbf{f}_{\mathrm{3rd}} = rac{3}{4} \cdot rac{\mathrm{v_w}}{\mathrm{L_{closed}}}$$

Open Calculator 🖒

$$extbf{ex} 97.5 ext{Hz} = rac{3}{4} \cdot rac{65 ext{m/s}}{0.5 ext{m}}$$

4) Frequency of 4th Harmonic Open Organ Pipe

 $extbf{f}_{4 ext{th}} = 2 \cdot rac{ ext{V}_{ ext{w}}}{ ext{L}_{ ext{open}}}$

Open Calculator

ex $180.5556 ext{Hz} = 2 \cdot rac{65 ext{m/s}}{0.72 ext{m}}$

5) Frequency of Closed Organ Pipe

 $\mathbf{f_{closed\ pipe}} = rac{2 \cdot \mathrm{n} + 1}{4} \cdot rac{\mathrm{v_w}}{\mathrm{L_{closed}}}$

Open Calculator 🗗

Open Calculator

Open Calculator

ex $162.5 = \frac{2 \cdot 2 + 1}{4} \cdot \frac{65 \text{m/s}}{0.5 \text{m}}$

6) Frequency of Open Organ Pipe

 $\mathbf{f}_{\mathrm{open\;pipe}} = rac{\mathrm{n}}{2} \cdot rac{\mathrm{v}_{\mathrm{w}}}{\mathrm{L}_{\mathrm{open}}}$

 $\mathbf{ex} = \frac{2}{90.27778} = \frac{2}{2} \cdot \frac{65 \mathrm{m/s}}{0.72 \mathrm{m}}$

$\begin{array}{ccc} 2 & 0.72 \mathrm{m} \end{array}$

 $\overline{\mathrm{L}_{\mathrm{open}}}$

$$ext{45.13889Hz} = rac{2-1}{2} \cdot rac{65 ext{m/s}}{0.72 ext{m}}$$

8) Length of Closed Organ Pipe

3

Open Calculator 🗗

$$\mathbf{L}_{\mathrm{closed}} = (2 \cdot \mathrm{n} + 1) \cdot rac{\lambda}{4}$$

$$\boxed{0.5\mathrm{m} = (2\cdot 2 + 1)\cdot \frac{0.4\mathrm{m}}{4}}$$

9) Length of Open Organ Pipe

Open Calculator 🖸

Sound Propagation

10) Intensity of Sound

$$extbf{fx} I_{
m s} = rac{
m P}{
m A}$$

$$m ex = 20W/m^2 = rac{900W}{45m^2}$$

Open Calculator 🗗

11) Velocity of Sound in Liquid

 $ag{K} v_{
m speed} = \sqrt{rac{K}{
ho}}$

Open Calculator

Open Calculator

ex
$$1480 ext{m/s} = \sqrt{rac{2183.83 ext{MPa}}{997 ext{kg/m}^3}}$$

12) Velocity of Sound in Solids

ex
$$1480.912 \mathrm{m/s} = \sqrt{\frac{2186.52 \mathrm{MPa}}{997 \mathrm{kg/m^3}}}$$

Variables Used

- A Normal Area (Square Meter)
- E Elasticity (Megapascal)
- **f** Frequency (Hertz)
- f_{1st} Frequency of 1st Harmonic Closed Organ Pipe (Hertz)
- **f**_{2nd} Frequency of 2nd Harmonic Open Organ Pipe (Hertz)
- f_{3rd} Frequency of 3rd Harmonic Closed Organ Pipe (Hertz)
- f_{4th} Frequency of 4th Harmonic Open Organ Pipe (Hertz)
- fclosed pipe Frequency of Closed Organ Pipe
- fopen pipe Frequency of Open Organ Pipe
- fopen pipe.Nth Frequency of Open Organ Pipe for Nth Overtone (Hertz)
- Is Sound Intensity (Watt per Square Meter)
- K Bulk Modulus (Megapascal)
- L_{closed} Length of Closed Organ Pipe (Meter)
- Lopen Length of Open Organ Pipe (Meter)
- n Number of Nodes
- P Power (Watt)
- V_{speed} Velocity of Sound (Meter per Second)
- V_w Velocity of Wave (Meter per Second)
- **\(\lambda \)** Wavelength (*Meter*)
- p Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion
- Measurement: Intensity in Watt per Square Meter (W/m²)
 Intensity Unit Conversion

Check other formula lists

- Sound Propagation and Resonance Formulas
- Wave Properties and Equations Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/24/2024 | 8:01:35 AM UTC

Please leave your feedback here...

