unitsconverters.com

Important Formulas of Regular Square Pyramid

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here.

List of 20 Important Formulas of Regular Square Pyramid

Important Formulas of Regular Square Pyramid ©

1) Base Angle of Square Pyramid
$\mathrm{fx} \angle_{\text {Base }}=\arccos \left(\frac{\left(\frac{\mathrm{l}_{(\text {(Base })}}{2}\right)^{2}+\mathrm{h}_{\text {slant }}^{2}-\mathrm{h}^{2}}{\mathrm{l}_{\mathrm{e}(\text { Base })} \cdot \mathrm{h}_{\text {slant }}}\right)$
$\operatorname{ex} 69.51268^{\circ}=\arccos \left(\frac{\left(\frac{10 \mathrm{~m}}{2}\right)^{2}+(16 \mathrm{~m})^{2}-(15 \mathrm{~m})^{2}}{10 \mathrm{~m} \cdot 16 \mathrm{~m}}\right)$
2) Base Area of Square Pyramid | \square |
| :--- |

$f \mathrm{fx} \mathrm{A}_{\text {Base }}=l_{\mathrm{e}(\text { Base })}^{2}$
ex $100 \mathrm{~m}^{2}=(10 \mathrm{~m})^{2}$
3) Edge Length of Base of Square Pyramid given Lateral Edge Length
$\mathrm{fx} \mathrm{l}_{\mathrm{e}(\text { Base })}=\sqrt{2 \cdot\left(\mathrm{l}_{\mathrm{e}(\text { Lateral })}^{2}-\mathrm{h}^{2}\right)}$
ex $11.31371 \mathrm{~m}=\sqrt{2 \cdot\left((17 \mathrm{~m})^{2}-(15 \mathrm{~m})^{2}\right)}$
4) Edge Length of Base of Square Pyramid given Slant Height \qquad

$\mathrm{fx}_{\mathrm{x}} \mathrm{l}_{\mathrm{e}(\text { Base })}=2 \cdot \sqrt{\mathrm{~h}_{\text {slant }}^{2}-\mathrm{h}^{2}}$
ex $11.13553 \mathrm{~m}=2 \cdot \sqrt{(16 \mathrm{~m})^{2}-(15 \mathrm{~m})^{2}}$
5) Height of Square Pyramid given Base Angle
$f \mathrm{x} h=\sqrt{\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{4}+\mathrm{h}_{\text {slant }}^{2}-\left(\mathrm{l}_{\mathrm{e}(\text { Base })} \cdot \mathrm{h}_{\text {slant }} \cdot \cos \left(\angle_{\text {Base }}\right)\right)}$
ex $15.0425 m=\sqrt{\frac{(10 \mathrm{~m})^{2}}{4}+(16 \mathrm{~m})^{2}-\left(10 \mathrm{~m} \cdot 16 \mathrm{~m} \cdot \cos \left(70^{\circ}\right)\right)}$
6) Height of Square Pyramid given Lateral Edge Length
$f_{\mathrm{x}} \mathrm{h}=\sqrt{\mathrm{l}_{\mathrm{e}(\text { Lateral })}^{2}-\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{2}}$
$\operatorname{ex} 15.45962 \mathrm{~m}=\sqrt{(17 \mathrm{~m})^{2}-\frac{(10 \mathrm{~m})^{2}}{2}}$
7) Height of Square Pyramid given Volume $\boxed{\square}$
$\mathrm{fx} \mathrm{h}=\frac{3 \cdot V}{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}$
ex $15 \mathrm{~m}=\frac{3 \cdot 500 \mathrm{~m}^{3}}{(10 \mathrm{~m})^{2}}$
8) Lateral Edge Length of Square Pyramid
$f \mathrm{fx} \mathrm{l}_{\mathrm{e}(\text { Lateral })}=\sqrt{\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{2}+\mathrm{h}^{2}}$
ex $16.58312 \mathrm{~m}=\sqrt{\frac{(10 \mathrm{~m})^{2}}{2}+(15 \mathrm{~m})^{2}}$
9) Lateral Edge Length of Square Pyramid given Base Angle
$f \mathrm{fx} \mathrm{l}_{\mathrm{e}(\text { Lateral })}=\sqrt{\frac{3 \cdot \mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{4}+\mathrm{h}_{\text {slant }}^{2}-\left(\mathrm{l}_{\mathrm{e}(\text { Base })} \cdot \mathrm{h}_{\text {slant }} \cdot \cos \left(\angle_{\text {Base }}\right)\right)}$
$\operatorname{ex} 16.62158 \mathrm{~m}=\sqrt{\frac{3 \cdot(10 \mathrm{~m})^{2}}{4}+(16 \mathrm{~m})^{2}-\left(10 \mathrm{~m} \cdot 16 \mathrm{~m} \cdot \cos \left(70^{\circ}\right)\right)}$
10) Lateral Edge Length of Square Pyramid given Volume and Height \longleftarrow
$f \times l_{\mathrm{e}(\text { Lateral })}=\sqrt{\mathrm{h}^{2}+\left(\frac{3}{2} \cdot \frac{\mathrm{~V}}{\mathrm{~h}}\right)}$
ex $16.58312 \mathrm{~m}=\sqrt{(15 \mathrm{~m})^{2}+\left(\frac{3}{2} \cdot \frac{500 \mathrm{~m}^{3}}{15 \mathrm{~m}}\right)}$
11) Lateral Surface Area of Square Pyramid
$f \mathrm{fx} \mathrm{LSA}=2 \cdot l_{\mathrm{e}(\text { Base })} \cdot \sqrt{\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{4}+\mathrm{h}^{2}}$
ex $316.2278 \mathrm{~m}^{2}=2 \cdot 10 \mathrm{~m} \cdot \sqrt{\frac{(10 \mathrm{~m})^{2}}{4}+(15 \mathrm{~m})^{2}}$
12) Lateral Surface Area of Square Pyramid given Slant Height
$f \mathbf{x} \mathrm{LSA}=2 \cdot \mathrm{l}_{\mathrm{e}(\text { Base })} \cdot \mathrm{h}_{\text {slant }}$
ex $320 \mathrm{~m}^{2}=2 \cdot 10 \mathrm{~m} \cdot 16 \mathrm{~m}$
13) Slant Height of Square Pyramid
$f \mathrm{fx} \mathrm{h}_{\text {slant }}=\sqrt{\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{4}+\mathrm{h}^{2}}$
$\operatorname{ex} 15.81139 \mathrm{~m}=\sqrt{\frac{(10 \mathrm{~m})^{2}}{4}+(15 \mathrm{~m})^{2}}$
14) Slant Height of Square Pyramid given Total Surface Area
$f \mathbf{f} \mathrm{~h}_{\text {slant }}=\sqrt{\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{4}+\frac{\left(\frac{\mathrm{TSA}-\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{\mathrm{l}_{\mathrm{e}(\text { Base })}}\right)^{2}-\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{4}}$
ex $16 \mathrm{~m}=\sqrt{\frac{(10 \mathrm{~m})^{2}}{4}+\frac{\left(\frac{420 \mathrm{~m}^{2}-(10 \mathrm{~m})^{2}}{10 \mathrm{~m}}\right)^{2}-(10 \mathrm{~m})^{2}}{4}}$
15) Surface to Volume Ratio of Square Pyramid
$f \times R_{\mathrm{A} / \mathrm{V}}=\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}+\left(\mathrm{l}_{\mathrm{e}(\text { Base })} \cdot \sqrt{\left(4 \cdot \mathrm{~h}^{2}\right)+\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}\right)}{\frac{1}{3} \cdot \mathrm{l}_{\mathrm{e}(\text { Base })}^{2} \cdot \mathrm{~h}}$
Open Calculator

$$
\operatorname{ex} 0.832456 \mathrm{~m}^{-1}=\frac{(10 \mathrm{~m})^{2}+\left(10 \mathrm{~m} \cdot \sqrt{\left(4 \cdot(15 \mathrm{~m})^{2}\right)+(10 \mathrm{~m})^{2}}\right)}{\frac{1}{3} \cdot(10 \mathrm{~m})^{2} \cdot 15 \mathrm{~m}}
$$

16) Surface to Volume Ratio of Square Pyramid given Lateral Edge Length and Height
$f \mathrm{f}$
$\mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{\left(2 \cdot\left(\mathrm{l}_{\mathrm{e}(\text { Lateral })}^{2}-\mathrm{h}^{2}\right)\right)+\left(\sqrt{2 \cdot\left(\mathrm{l}_{\mathrm{e}(\text { Lateral })}^{2}-\mathrm{h}^{2}\right)} \cdot \sqrt{2 \cdot\left(\mathrm{l}_{\mathrm{e}(\text { Lateral })}^{2}+\mathrm{h}^{2}\right)}\right)}{\frac{1}{3} \cdot \mathrm{~h} \cdot\left(2 \cdot\left(\mathrm{l}_{\mathrm{e}(\text { Lateral })}^{2}-\mathrm{h}^{2}\right)\right)}$
ex
$0.766789 \mathrm{~m}^{-1}=\frac{\left(2 \cdot\left((17 \mathrm{~m})^{2}-(15 \mathrm{~m})^{2}\right)\right)+\left(\sqrt{2 \cdot\left((17 \mathrm{~m})^{2}-(15 \mathrm{~m})^{2}\right)} \cdot \sqrt{2 \cdot\left((17 \mathrm{~m})^{2}+(15 \mathrm{~m})^{2}\right)}\right)}{\frac{1}{3} \cdot 15 \mathrm{~m} \cdot\left(2 \cdot\left((17 \mathrm{~m})^{2}-(15 \mathrm{~m})^{2}\right)\right)}$
17) Total Surface Area of Square Pyramid
$f \mathbf{x} \mathrm{TSA}=\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}+\left(\mathrm{l}_{\mathrm{e}(\text { Base })} \cdot \sqrt{\left(4 \cdot \mathrm{~h}^{2}\right)+\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}\right)$
ex $416.2278 \mathrm{~m}^{2}=(10 \mathrm{~m})^{2}+\left(10 \mathrm{~m} \cdot \sqrt{\left(4 \cdot(15 \mathrm{~m})^{2}\right)+(10 \mathrm{~m})^{2}}\right)$
18) Total Surface Area of Square Pyramid given Slant Height
$\mathrm{fx} \mathrm{TSA}=\left(2 \cdot \mathrm{l}_{\mathrm{e}(\text { Base })} \cdot \mathrm{h}_{\text {slant }}\right)+\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}$
ex $420 \mathrm{~m}^{2}=(2 \cdot 10 \mathrm{~m} \cdot 16 \mathrm{~m})+(10 \mathrm{~m})^{2}$
19) Volume of Square Pyramid $\sqrt{\square}$
$\mathrm{fx} \mathrm{V}=\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2} \cdot \mathrm{~h}}{3}$
ex $500 \mathrm{~m}^{3}=\frac{(10 \mathrm{~m})^{2} \cdot 15 \mathrm{~m}}{3}$
20) Volume of Square Pyramid given Slant Height
$\mathrm{fx} \mathrm{V}=\frac{1}{3} \cdot \mathrm{l}_{\mathrm{e}(\text { Base })}^{2} \cdot \sqrt{\mathrm{~h}_{\mathrm{slant}}^{2}-\frac{\mathrm{l}_{\mathrm{e}(\text { Base })}^{2}}{4}}$
ex $506.6228 \mathrm{~m}^{3}=\frac{1}{3} \cdot(10 \mathrm{~m})^{2} \cdot \sqrt{(16 \mathrm{~m})^{2}-\frac{(10 \mathrm{~m})^{2}}{4}}$

Variables Used

- \angle Base Base Angle of Square Pyramid (Degree)
- ABase Base Area of Square Pyramid (Square Meter)
- h Height of Square Pyramid (Meter)
- $\mathbf{h}_{\text {slant }}$ Slant Height of Square Pyramid (Meter)
- $l_{\mathbf{e} \text { (Base) }}$ Edge Length of Base of Square Pyramid (Meter)
- $\mathrm{I}_{\mathrm{e} \text { (Lateral) }}$ Lateral Edge Length of Square Pyramid (Meter)
- LSA Lateral Surface Area of Square Pyramid (Square Meter)
- $\mathbf{R}_{\mathbf{A} / \mathbf{v}}$ Surface to Volume Ratio of Square Pyramid (1 per Meter)
- TSA Total Surface Area of Square Pyramid (Square Meter)
- V Volume of Square Pyramid (Cubic Meter)

Constants, Functions, Measurements used

- Function: arccos, arccos(Number)

Arccosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion
U

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Reciprocal Length in 1 per Meter (m^{-1})

Reciprocal Length Unit Conversion

Check other formula lists

- Equilateral Square Pyramid Formulas
- Regular Square Pyramid Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

