Elliptical Shapes and Sub Sections Formulas

Calculators!

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 26 Elliptical Shapes and Sub Sections Formulas

Elliptical Shapes and Sub Sections ©

Elliptical Ring 주

Area of Elliptical Ring

1) Area of Elliptical Ring
fx $\mathrm{A}_{\text {Ring }}=\pi \cdot\left(\left(\mathrm{a}_{\text {Outer }} \cdot \mathrm{b}_{\text {Outer }}\right)-\left(\mathrm{a}_{\text {Inner }} \cdot \mathrm{b}_{\text {Inner }}\right)\right)$
ex $141.3717 \mathrm{~m}^{2}=\pi \cdot((10 \mathrm{~m} \cdot 8 \mathrm{~m})-(7 \mathrm{~m} \cdot 5 \mathrm{~m}))$
2) Area of Elliptical Ring given Linear Eccentricities and Semi Major Axes
$f \mathbf{f x} \mathrm{~A}_{\text {Ring }}=\pi \cdot\left(\left(\sqrt{\mathrm{a}_{\text {Outer }}^{2}-\mathrm{c}_{\text {Outer }}^{2}} \cdot \mathrm{a}_{\text {Outer }}\right)-\left(\sqrt{\mathrm{a}_{\text {Inner }}^{2}-\mathrm{c}_{\text {Inner }}^{2}} \cdot \mathrm{a}_{\text {Inner }}\right)\right)$
ex $124.9979 \mathrm{~m}^{2}=\pi \cdot\left(\left(\sqrt{(10 \mathrm{~m})^{2}-(6 \mathrm{~m})^{2}} \cdot 10 \mathrm{~m}\right)-\left(\sqrt{(7 \mathrm{~m})^{2}-(4 \mathrm{~m})^{2}} \cdot 7 \mathrm{~m}\right)\right)$
3) Area of Elliptical Ring given Linear Eccentricities and Semi Minor Axes
$f \mathbf{f x} \mathrm{~A}_{\text {Ring }}=\pi \cdot\left(\left(\sqrt{\mathrm{b}_{\text {Outer }}^{2}+\mathrm{c}_{\text {Outer }}^{2}} \cdot \mathrm{~b}_{\text {Outer }}\right)-\left(\sqrt{\mathrm{b}_{\text {Inner }}^{2}+\mathrm{c}_{\text {Inner }}^{2}} \cdot \mathrm{~b}_{\text {Inner }}\right)\right)$
Open Calculator
ex $150.7474 \mathrm{~m}^{2}=\pi \cdot\left(\left(\sqrt{(8 \mathrm{~m})^{2}+(6 \mathrm{~m})^{2}} \cdot 8 \mathrm{~m}\right)-\left(\sqrt{(5 \mathrm{~m})^{2}+(4 \mathrm{~m})^{2}} \cdot 5 \mathrm{~m}\right)\right)$
4) Area of Elliptical Ring given Width and Outer Semi Axes
$f \times \mathrm{A}_{\text {Ring }}=\pi \cdot\left(\left(\mathrm{a}_{\text {Outer }} \cdot \mathrm{b}_{\text {Outer }}\right)-\left(\left(\mathrm{a}_{\text {Outer }}-\mathrm{w}_{\text {Ring }}\right) \cdot\left(\mathrm{b}_{\text {Outer }}-\mathrm{w}_{\text {Ring }}\right)\right)\right)$
ex $141.3717 \mathrm{~m}^{2}=\pi \cdot((10 \mathrm{~m} \cdot 8 \mathrm{~m})-((10 \mathrm{~m}-3 \mathrm{~m}) \cdot(8 \mathrm{~m}-3 \mathrm{~m})))$

Inner Axis of Elliptical Ring

5) Inner Semi Major Axis of Elliptical Ring
$\mathrm{fx} \mathrm{a}_{\text {Inner }}=\mathrm{a}_{\text {Outer }}-\mathrm{w}_{\text {Ring }}$
Open Calculator
ex $7 \mathrm{~m}=10 \mathrm{~m}-3 \mathrm{~m}$
6) Inner Semi Minor Axis of Elliptical Ring 〔
$f \mathrm{f} \mathrm{b}_{\text {Inner }}=\mathrm{b}_{\text {Outer }}-\mathrm{w}_{\text {Ring }}$
ex $5 m=8 m-3 m$

Outer Axis of Elliptical Ring

7) Outer Semi Major Axis of Elliptical Ring $\boxed{\Omega}$
$f \mathbf{x} \mathrm{a}_{\text {Outer }}=\mathrm{a}_{\text {Inner }}+\mathrm{w}_{\text {Ring }}$
ex $10 \mathrm{~m}=7 \mathrm{~m}+3 \mathrm{~m}$
8) Outer Semi Minor Axis of Elliptical Ring
$f \mathbf{x} \mathrm{~b}_{\text {Outer }}=\mathrm{b}_{\text {Inner }}+\mathrm{w}_{\text {Ring }}$
ex $8 \mathrm{~m}=5 \mathrm{~m}+3 \mathrm{~m}$

Ring Width of Elliptical Ring

9) Ring Width of Elliptical Ring given Outer and Inner Semi Major Axes
$f \mathrm{f} \mathrm{w}_{\text {Ring }}=\mathrm{a}_{\text {Outer }}-\mathrm{a}_{\text {Inner }}$
ex $3 \mathrm{~m}=10 \mathrm{~m}-7 \mathrm{~m}$
10) Ring Width of Elliptical Ring given Outer and Inner Semi Minor Axes
$\mathrm{fx} \mathrm{w}_{\text {Ring }}=\mathrm{b}_{\text {Outer }}-\mathrm{b}_{\text {Inner }}$
ex $3 m=8 m-5 m$

Elliptical Sector

11) Angle of Elliptical Sector
fx $\angle_{\text {Sector }}=\angle_{\operatorname{Leg}(2)}-\angle_{\operatorname{Leg}(1)}$
ex $90^{\circ}=120^{\circ}-30^{\circ}$
12) Area of Elliptical Sector
$\mathrm{A}_{\text {Sec }}=\left(\frac{\mathrm{a}_{\text {Sector }} \cdot \mathrm{b}_{\text {Sector }}}{2}\right) \cdot\left(\angle_{\text {Sector }}-a \tan \left(\frac{\left(\mathrm{~b}_{\text {Sector }}-\mathrm{a}_{\text {Sector }}\right) \cdot \sin \left(2 \cdot \angle_{\mathrm{Leg}(2)}\right)}{\mathrm{a}_{\text {Sector }}+\mathrm{b}_{\text {Sector }}+\left(\left(\mathrm{b}_{\text {Sector }}-\mathrm{a}_{\text {Sector }}\right) \cdot \cos (2 \cdot\right.}\right.\right.$
ex
$34.14321 \mathrm{~m}^{2}=\left(\frac{10 \mathrm{~m} \cdot 6 \mathrm{~m}}{2}\right) \cdot\left(90^{\circ}-a \tan \left(\frac{(6 \mathrm{~m}-10 \mathrm{~m}) \cdot \sin \left(2 \cdot 120^{\circ}\right)}{10 \mathrm{~m}+6 \mathrm{~m}+\left((6 \mathrm{~m}-10 \mathrm{~m}) \cdot \cos \left(2 \cdot 120^{\circ}\right)\right)}\right)+a \tan \left(\frac{(1}{10 \mathrm{~m}+61}\right.\right.$
13) First Leg Angle of Elliptical Sector
fx $\angle_{\operatorname{Leg}(1)}=\angle_{\operatorname{Leg}(2)}-\angle_{\text {Sector }}$
ex $30^{\circ}=120^{\circ}-90^{\circ}$
14) First Leg of Elliptical Sector
$\mathbf{f x} \mathrm{l}_{1}=\sqrt{\frac{\mathrm{a}_{\text {Sector }}^{2} \cdot \mathrm{~b}_{\text {Sector }}^{2}}{\left(\mathrm{a}_{\text {Sector }}^{2} \cdot \sin \left(\angle \mathrm{Leg}(1)^{2}\right)+\left(\mathrm{b}_{\text {Sector }}^{2} \cdot \cos \left(\angle_{\mathrm{Leg}(1)}\right)^{2}\right)\right.}}$

$$
\text { ex } 8.320503 \mathrm{~m}=\sqrt{\frac{(10 \mathrm{~m})^{2} \cdot(6 \mathrm{~m})^{2}}{\left((10 \mathrm{~m})^{2} \cdot \sin \left(30^{\circ}\right)^{2}\right)+\left((6 \mathrm{~m})^{2} \cdot \cos \left(30^{\circ}\right)^{2}\right)}}
$$

15) Second Leg Angle of Elliptical Sector

fx $\angle_{\operatorname{Leg}(2)}=\angle_{\text {Sector }}+\angle_{\operatorname{Leg}(1)}$
ex $120^{\circ}=90^{\circ}+30^{\circ}$
16) Second Leg of Elliptical Sector
$\mathbf{f x} \mathrm{l}_{2}=\sqrt{\frac{\mathrm{a}_{\text {Sector }}^{2} \cdot \mathrm{~b}_{\text {Sector }}^{2}}{\left(\mathrm{a}_{\text {Sector }}^{2} \cdot \sin \left(\angle_{\operatorname{Leg}(2)}\right)^{2}\right)+\left(\mathrm{b}_{\text {Sector }}^{2} \cdot \cos \left(\angle_{\mathrm{Leg}(2)}\right)^{2}\right)}}$
ex $6.546537 \mathrm{~m}=\sqrt{\frac{(10 \mathrm{~m})^{2} \cdot(6 \mathrm{~m})^{2}}{\left((10 \mathrm{~m})^{2} \cdot \sin \left(120^{\circ}\right)^{2}\right)+\left((6 \mathrm{~m})^{2} \cdot \cos \left(120^{\circ}\right)^{2}\right)}}$

Elliptical Segment ©®

17) Area of Elliptical Segment
$f x$
Open Calculator
$\mathrm{A}_{\text {Segment }}=\left(\frac{2 \mathrm{a} \cdot 2 \mathrm{~b}}{4}\right) \cdot\left(\arccos \left(1-\left(\frac{2 \cdot \mathrm{~h}_{\text {Segment }}}{2 \mathrm{a}}\right)\right)-\left(1-\left(\frac{2 \cdot \mathrm{~h}_{\text {Segment }}}{2 \mathrm{a}}\right)\right) \cdot \sqrt{\left(\frac{4 \cdot]}{}\right.}\right.$
ex
$26.83771 \mathrm{~m}^{2}=\left(\frac{20 \mathrm{~m} \cdot 12 \mathrm{~m}}{4}\right) \cdot\left(\arccos \left(1-\left(\frac{2 \cdot 4 \mathrm{~m}}{20 \mathrm{~m}}\right)\right)-\left(1-\left(\frac{2 \cdot 4 \mathrm{~m}}{20 \mathrm{~m}}\right)\right) \cdot \sqrt{\left(\frac{4 \cdot 4 \mathrm{~m}}{20 \mathrm{~m}}\right)-\left(\frac{4 \cdot(4 \mathrm{~m})^{2}}{(20 \mathrm{~m})^{2}}\right.}\right.$
18) Major Axis of Elliptical Segment
$f \mathbf{f} 2 \mathrm{a}=2 \cdot \mathrm{a}_{\text {Segment }}$
ex $20 \mathrm{~m}=2 \cdot 10 \mathrm{~m}$
19) Minor Axis of Elliptical Segment
$f \mathrm{x} 2 \mathrm{~b}=2 \cdot \mathrm{~b}_{\text {Segment }}$
ex $12 \mathrm{~m}=2 \cdot 6 \mathrm{~m}$
20) Semi Major Axis of Elliptical Segment
$f \times \mathrm{a}_{\text {Segment }}=\frac{2 \mathrm{a}}{2}$
ex $10 \mathrm{~m}=\frac{20 \mathrm{~m}}{2}$
21) Semi Minor Axis of Elliptical Segment
$f \times \mathrm{b}_{\text {Segment }}=\frac{2 \mathrm{~b}}{2}$
ex $6 m=\frac{12 m}{2}$

Semi Ellipse

22) Arc Length of Semi Ellipse given Perimeter 凹
$f \mathrm{f} \mathrm{l}_{\mathrm{Arc}}=\mathrm{P}-\left(2 \cdot \mathrm{~s}_{\mathrm{Axis}}\right)$
ex $25 \mathrm{~m}=45 \mathrm{~m}-(2 \cdot 10 \mathrm{~m})$
$f x \mathrm{~A}_{\text {Semi }}=\left(\frac{\pi}{2}\right) \cdot \mathrm{s}_{\mathrm{Axis}} \cdot \mathrm{h}_{\text {Semi }}$
ex $94.24778 \mathrm{~m}^{2}=\left(\frac{\pi}{2}\right) \cdot 10 \mathrm{~m} \cdot 6 \mathrm{~m}$
23) Height of Semi Ellipse given Area
$f \times \mathrm{h}_{\mathrm{Semi}}=\frac{2 \cdot \mathrm{~A}_{\text {Semi }}}{\pi \cdot \mathrm{s}_{\mathrm{Axis}}}$
ex $6.047888 \mathrm{~m}=\frac{2 \cdot 95 \mathrm{~m}^{2}}{\pi \cdot 10 \mathrm{~m}}$
24) Perimeter of Semi Ellipse
$f \mathrm{fx}=\left(2 \cdot \mathrm{~s}_{\mathrm{Axis}}\right)+\mathrm{l}_{\mathrm{Arc}}$
ex $45 \mathrm{~m}=(2 \cdot 10 \mathrm{~m})+25 \mathrm{~m}$
25) Semi Axis of Semi Ellipse given Area
$f \mathrm{fx} \mathrm{S}_{\text {Axis }}=\frac{2 \cdot \mathrm{~A}_{\text {Semi }}}{\pi \cdot \mathrm{h}_{\text {Semi }}}$
ex $10.07981 \mathrm{~m}=\frac{2 \cdot 95 \mathrm{~m}^{2}}{\pi \cdot 6 \mathrm{~m}}$

Variables Used

- LLeg(1) First Leg Angle of Elliptical Sector (Degree)
- $L_{\text {Leg(2) }}$ Second Leg Angle of Elliptical Sector (Degree)
- \angle Sector Angle of Elliptical Sector (Degree)
- 2a Major Axis of Elliptical Segment (Meter)
- 2b Minor Axis of Elliptical Segment (Meter)
- alnner Inner Semi Major Axis of Elliptical Ring (Meter)
- aouter Outer Semi Major Axis of Elliptical Ring (Meter)
- ARing Area of Elliptical Ring (Square Meter)
- $\mathbf{A S e c}$ Area of Elliptical Sector (Square Meter)
- $\mathbf{a}_{\text {Sector }}$ Semi Major Axis of Elliptical Sector (Meter)
- $\mathbf{a}_{\text {Segment }}$ Semi Major Axis of Elliptical Segment (Meter)
- ASegment Area of Elliptical Segment (Square Meter)
- $\mathbf{A S e m i}$ Area of Semi Ellipse (Square Meter)
- $\mathbf{b}_{\text {Inner }}$ Inner Semi Minor Axis of Elliptical Ring (Meter)
- ${ }^{\text {O }}$ Outer Outer Semi Minor Axis of Elliptical Ring (Meter)
- ${ }^{\text {Sector }}$ Semi Minor Axis of Elliptical Sector (Meter)
- $\mathbf{b}_{\text {Segment }}$ Semi Minor Axis of Elliptical Segment (Meter)
- CInner Inner Linear Eccentricity of Elliptical Ring (Meter)
- COuter Outer Linear Eccentricity of Elliptical Ring (Meter)
- $\mathbf{h}_{\text {Segment }}$ Height of Elliptical Segment (Meter)
- $\mathbf{h}_{\text {Semi }}$ Height of Semi Ellipse (Meter)
- \mathbf{I}_{1} First Leg of Elliptical Sector (Meter)
- $\mathbf{I}_{\mathbf{2}}$ Second Leg of Elliptical Sector (Meter)
- IArc Arc Length of Semi Ellipse (Meter)
- P Perimeter of Semi Ellipse (Meter)
- $\mathbf{S A x i s}^{\text {Semi Axis of Semi Ellipse (Meter) }}$
- WRing Ring Width of Elliptical Ring (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: arccos, arccos(Number)

Arccosine function, is the inverse function of the cosine function.It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: atan, atan(Number)

Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: $\boldsymbol{t a n}, \tan ($ Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion 【

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

- Ellipse Formulas
- Elliptical Shapes and Sub Sections Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

