

Open Rectangular Basin and Seiches Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 8 Open Rectangular Basin and Seiches Formulas

Open Rectangular Basin and Seiches 🗗

1) Length of Basin for Open Rectangular Basin

$$\mathbf{f}_{\mathrm{B}} = \mathrm{T_n} \cdot (1 + (2 \cdot \mathrm{N})) \cdot rac{\sqrt{[\mathrm{g}] \cdot \mathrm{D}}}{4}$$

Open Calculator 🗗

$$\mathbf{ex} = 53.69776 \mathrm{m} = 5.5 \mathrm{s} \cdot (1 + (2 \cdot 1.3)) \cdot \frac{\sqrt{[\mathrm{g}] \cdot 12 \mathrm{m}}}{4}$$

2) Length of Basin given Natural Free Oscillating Period of Basin

$$l_{
m B} = rac{{
m T_n \cdot N \cdot \sqrt{[g] \cdot D}}}{2}$$

Open Calculator 🗗

$$= \frac{38.78171 \text{m}}{2} = \frac{5.5 \text{s} \cdot 1.3 \cdot \sqrt{[\text{g}] \cdot 12 \text{m}}}{2}$$

3) Natural Free Oscillating Period of Basin

$$ag{T_n} = rac{2 \cdot l_B}{N \cdot \sqrt{[g] \cdot D}}$$

Open Calculator

4) Natural Free Oscillating Period of Basin for Open Rectangular Basin 🗗

Open Calculator 2

ex
$$3.972251s = 4 \cdot \frac{38.782m}{(1 + (2 \cdot 1.3)) \cdot \sqrt{[g] \cdot 12m}}$$

5) Number of Nodes along Axis of Basin for Open Rectangular Basin 🗗

Open Calculator 2

$$oxed{ex} 0.80001 = rac{\left(4 \cdot rac{38.782 \mathrm{m}}{5.5 \mathrm{s} \cdot \sqrt{[\mathrm{g}] \cdot 12 \mathrm{m}}}
ight) - 1}{2}$$

6) Number of Nodes along Axis of Basin given Natural Free Oscillating Period of Basin

$$N = rac{2 \cdot l_B}{T_n \cdot \sqrt{[g] \cdot D}}$$

Open Calculator

ex
$$1.30001 = \frac{2 \cdot 38.782 \text{m}}{5.5 \text{s} \cdot \sqrt{[\text{g}] \cdot 12 \text{m}}}$$

7) Water Depth for Open Rectangular Basin 🗗

Open Calculator 🖸

$$egin{aligned} \mathbf{ex} \ 6.259351 \mathrm{m} = rac{\left(4 \cdot rac{38.782 \mathrm{m}}{5.5 \mathrm{s} \cdot (1 + 2 \cdot (1.3))}
ight)^2}{[\mathrm{g}]} \end{aligned}$$

8) Water Depth given Natural Free Oscillating Period of Basin

Open Calculator

ex
$$12.00018 \mathrm{m} = rac{\left(2 \cdot rac{38.782 \mathrm{m}}{5.5 \mathrm{s} \cdot 1.3}
ight)^2}{[\mathrm{g}]}$$

Variables Used

- **D** Water Depth (Meter)
- **I**_B Length of the Basin (Meter)
- N Number of Nodes along the Axis of a Basin
- T_n Natural Free Oscillating Period of a Basin (Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665
 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion

Check other formula lists

 Open Rectangular Basin and Seiches Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/27/2024 | 8:35:34 AM UTC

Please leave your feedback here...

