

Tide Producing Forces Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Tide Producing Forces Formulas

Tide Producing Forces 🕑

1) Distance from center of Earth to center of Sun given Attractive Force Potentials

$$f_{\mathbf{X}} \mathbf{r}_{s} = \left(\frac{\mathbf{R}_{M}^{2} \cdot \mathbf{f} \cdot \mathbf{M}_{sun} \cdot \mathbf{P}_{s}}{\mathbf{V}_{s}}\right)^{\frac{1}{3}}$$

$$e_{\mathbf{X}} \mathbf{1.4E}^{8} \mathbf{km} = \left(\frac{(6371 \mathrm{km})^{2} \cdot 2 \cdot 1.989 \mathrm{E30 \mathrm{kg}} \cdot 3\mathrm{E14}}{1.6\mathrm{E25}}\right)^{\frac{1}{3}}$$

2) Distance of point located on surface of Earth to center of Moon 🕑

$$f_{X} \mathbf{r}_{S/MX} = \frac{M \cdot f}{V_M}$$

$$e_{X} 257.8947 \mathrm{km} = \frac{7.35 \mathrm{E22 \mathrm{kg}} \cdot 2}{5.7 \mathrm{E17}}$$

$$f_{X} \mathbf{r}_{S/MX} = \frac{f \cdot M_{\mathrm{sun}}}{V_{\mathrm{s}}}$$

$$f_{X} \mathbf{r}_{S/MX} = \frac{f \cdot M_{\mathrm{sun}}}{V_{\mathrm{s}}}$$

$$e_{X} 248.625 \mathrm{km} = \frac{2 \cdot 1.989 \mathrm{E30 \mathrm{kg}}}{1.6 \mathrm{E25}}$$

4) Gravitational constant given radius of Earth and acceleration of gravity

fx
$$[G] = rac{[g] \cdot R_M^2}{[Earth-M]}$$

$$\textbf{ex} \ \textbf{6.7E^--11} = \frac{\left[\textbf{g}\right] \cdot \left(\textbf{6371km}\right)^2}{\left[\text{Earth-M}\right]}$$

5) Gravitational Forces on particles 🕑

fx
$$\mathbf{F}_{\mathrm{g}} = [\mathrm{g}] \cdot \left(\mathrm{m}_{1} \cdot rac{\mathrm{m}_{2}}{\mathrm{r}^{2}}
ight)$$

ex
$$5.1E^{-6N} = [g] \cdot \left(90 \text{kg} \cdot \frac{110 \text{kg}}{(138040.28 \text{m})^2}\right)$$

6) Greenwich Time Measured 🕑

fx
$$GMT = T_L + \left(\frac{LMT}{15}\right)$$

ex
$$9.533333h = 9.5h + \left(rac{0.5h}{15}
ight)$$

Open Calculator 🕑

Open Calculator 🕑

Open Calculator

7) Local Time given Greenwich Time Measured 🕑

fx
$$T_{
m L}={
m GMT}-\left(rac{{
m LMT}}{15}
ight)$$
ex $9.496667{
m h}=9.53{
m h}-\left(rac{0.5{
m h}}{15}
ight)$

8) Local Time Meridian given Greenwich Time Measured 🕑

fx
$$\mathrm{LMT} = 15 \cdot (\mathrm{GMT} - \mathrm{T_L})$$

$$x 0.45 h = 15 \cdot (9.53 h - 9.5 h)$$

9) Local Time Meridian given Modified Epoch for longitude and Time Meridian Corrections

fx
$$LMT = (k - \kappa' + pL) \cdot \frac{15}{a}$$

$$ex \ 0.5 {
m h} = (185.2 - 9 + 11) \cdot rac{15}{1.56 {
m m}}$$

10) Modified form of epoch accounting for longitude and time meridian corrections

fx
$$\kappa' = k + pL - \left(a \cdot \frac{LMT}{15}\right)$$

ex $9 = 185.2 + 11 - \left(1.56 \text{m} \cdot \frac{0.5 \text{h}}{15}\right)$

Open Calculator

Open Calculator 🕑

Open Calculator

Open Calculator

11) Phase Lag given Modified Epoch that accounts for longitude and Time Meridian Corrections

fx
$$\mathbf{k} = \kappa' - \mathrm{pL} + \left(\mathbf{a} \cdot \frac{\mathrm{LMT}}{15}\right)$$

ex
$$185.2 = 9 - 11 + \left(1.56 \text{m} \cdot \frac{0.5 \text{h}}{15}\right)$$

12) Poisson Probability Law for Number of Storms simulated per year 🕑

fx
$$\mathbf{P}_{\mathrm{N\,=\,n}} = rac{e^{-(\lambda\cdot\mathrm{T})}\cdot\left(\lambda\cdot\mathrm{T}
ight)^{\mathrm{N}}-\{\mathrm{s}\}}{\mathrm{N}_{\mathrm{s}}!}$$

ex
$$4.1\text{E}^{-19} = rac{e^{-(0.004 \cdot 60)} \cdot (0.004 \cdot 60)^{20}}{20!}$$

13) Separation of distance between centers of mass of two bodies given gravitational forces

fx
$$\mathbf{r} = \sqrt{\frac{([\mathbf{g}]) \cdot \mathbf{m}_1 \cdot \mathbf{m}_2}{\mathbf{F}_{\mathbf{g}}}}$$

ex $138040.3 \mathrm{m} = \sqrt{\frac{([\mathbf{g}]) \cdot 90 \mathrm{kg} \cdot 110 \mathrm{kg}}{5.095 \mathrm{E}^{-6} \mathrm{N}}}$

5/9

Open Calculator

Open Calculator

Variables Used

- [G] Gravitational Constant
- a Wave Amplitude (Meter)
- f Universal Constant
- **F**_q Gravitational Forces Between Particles (Newton)
- **GMT** Greenwich Time Measured (Hour)
- k Phase Lag
- LMT Local Time Meridian (Hour)
- M Mass of the Moon (Kilogram)
- **m₁** Mass of Body A (Kilogram)
- m₂ Mass of Body B (Kilogram)
- M_{sun} Mass of the Sun (Kilogram)
- N_s Number of Storm Events
- P_{N=n} Poisson Probability Law for the number of storms
- P_s Harmonic Polynomial Expansion Terms for Sun
- pL Local and Greenwich Phase Arguments
- **r** Distance between Two Masses (Meter)
- R_M Mean Radius of the Earth (Kilometer)
- **r_s** Distance (Kilometer)
- **r**S/MX Distance of Point (Kilometer)
- T Number of Years
- T_L Local Time (Hour)
- + V_M Attractive Force Potentials for Moon

- + V_s Attractive Force Potentials for Sun
- κ' Modified form of the Epoch
- λ Mean Frequency of Observed Events

Constants, Functions, Measurements used

- Constant: [Earth-M], 5.9722E+24 Earth mass
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Constant: e, 2.71828182845904523536028747135266249 Napier's constant
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Kilometer (km), Meter (m)
 Length Unit Conversion C
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Time in Hour (h) Time Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion

Check other formula lists

- Attractive Force Potentials
 Formulas
- Tide Producing Forces
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/27/2024 | 8:14:12 AM UTC

Please leave your feedback here ...

