
calculatoratoz.com

unitsconverters.com

Tide Producing Forces Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Tide Producing Forces Formulas

Tide Producing Forces ©

1) Distance from center of Earth to center of Sun given Attractive Force Potentials
$f \mathrm{x} \mathrm{r}_{\mathrm{s}}=\left(\frac{\mathrm{R}_{\mathrm{M}}^{2} \cdot \mathrm{f} \cdot \mathrm{M}_{\mathrm{sun}} \cdot \mathrm{P}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{s}}}\right)^{\frac{1}{3}}$
ex $1.4 \mathrm{E}^{\wedge} 8 \mathrm{~km}=\left(\frac{(6371 \mathrm{~km})^{2} \cdot 2 \cdot 1.989 \mathrm{E} 30 \mathrm{~kg} \cdot 3 \mathrm{E} 14}{1.6 \mathrm{E} 25}\right)^{\frac{1}{3}}$
2) Distance of point located on surface of Earth to center of Moon
$f \mathrm{fx} \mathrm{r}_{\mathrm{S} / \mathrm{MX}}=\frac{\mathrm{M} \cdot \mathrm{f}}{\mathrm{V}_{\mathrm{M}}}$
Open Calculator
ex $257.8947 \mathrm{~km}=\frac{7.35 \mathrm{E} 22 \mathrm{~kg} \cdot 2}{5.7 \mathrm{E} 17}$
3) Distance of point located on surface of earth to center of sun
$f \mathrm{fx} \mathrm{r}_{\mathrm{S} / \mathrm{MX}}=\frac{\mathrm{f} \cdot \mathrm{M}_{\text {sun }}}{\mathrm{V}_{\mathrm{S}}}$
Open Calculator
ex $248.625 \mathrm{~km}=\frac{2 \cdot 1.989 \mathrm{E} 30 \mathrm{~kg}}{1.6 \mathrm{E} 25}$
4) Gravitational constant given radius of Earth and acceleration of gravity \boxed{W}
$\mathrm{fx}[\mathrm{G}]=\frac{[\mathrm{g}] \cdot \mathrm{R}_{\mathrm{M}}^{2}}{[\text { Earth }-\mathrm{M}]}$
ex $6.7 \mathrm{E}^{\wedge}-11=\frac{[\mathrm{g}] \cdot(6371 \mathrm{~km})^{2}}{[\text { Earth-M }]}$
5) Gravitational Forces on particles $\boxed{\square}$
$f \mathrm{f}, \mathrm{F}_{\mathrm{g}}=[\mathrm{g}] \cdot\left(\mathrm{m}_{1} \cdot \frac{\mathrm{~m}_{2}}{\mathrm{r}^{2}}\right)$
ex $5.1 \mathrm{E}^{\wedge}-6 \mathrm{~N}=[\mathrm{g}] \cdot\left(90 \mathrm{~kg} \cdot \frac{110 \mathrm{~kg}}{(138040.28 \mathrm{~m})^{2}}\right)$
6) Greenwich Time Measured
$f \mathrm{GMT}=\mathrm{T}_{\mathrm{L}}+\left(\frac{\mathrm{LMT}}{15}\right)$
Open Calculator
ex $9.533333 \mathrm{~h}=9.5 \mathrm{~h}+\left(\frac{0.5 \mathrm{~h}}{15}\right)$
7) Local Time given Greenwich Time Measured
fx $\mathrm{T}_{\mathrm{L}}=\mathrm{GMT}-\left(\frac{\mathrm{LMT}}{15}\right)$
Open Calculator
ex $9.496667 \mathrm{~h}=9.53 \mathrm{~h}-\left(\frac{0.5 \mathrm{~h}}{15}\right)$
8) Local Time Meridian given Greenwich Time Measured
fx $\mathrm{LMT}=15 \cdot\left(\mathrm{GMT}-\mathrm{T}_{\mathrm{L}}\right)$
Open Calculator
ex $0.45 h=15 \cdot(9.53 h-9.5 h)$
9) Local Time Meridian given Modified Epoch for longitude and Time Meridian Corrections
$f \mathrm{x} \mathrm{LMT}=\left(\mathrm{k}-\kappa^{\prime}+\mathrm{pL}\right) \cdot \frac{15}{\mathrm{a}}$
Open Calculator
ex $0.5 h=(185.2-9+11) \cdot \frac{15}{1.56 m}$
10) Modified form of epoch accounting for longitude and time meridian corrections
$\mathrm{fx} \kappa^{\prime}=\mathrm{k}+\mathrm{pL}-\left(\mathrm{a} \cdot \frac{\mathrm{LMT}}{15}\right)$
ex $9=185.2+11-\left(1.56 m \cdot \frac{0.5 \mathrm{~h}}{15}\right)$
11) Phase Lag given Modified Epoch that accounts for longitude and Time Meridian Corrections \longleftarrow
$\mathrm{fx} \mathrm{k}=\kappa^{\prime}-\mathrm{pL}+\left(\mathrm{a} \cdot \frac{\mathrm{LMT}}{15}\right)$
ex $185.2=9-11+\left(1.56 \mathrm{~m} \cdot \frac{0.5 \mathrm{~h}}{15}\right)$
12) Poisson Probability Law for Number of Storms simulated per year
$\mathrm{fx}_{\mathrm{X}} \mathrm{P}_{\mathrm{N}=\mathrm{n}}=\frac{e^{-(\lambda \cdot \mathrm{T})} \cdot(\lambda \cdot \mathrm{T})^{\mathrm{N}}-\{\mathrm{s}\}}{\mathrm{N}_{\mathrm{s}}!}$
Open Calculator
ex $4.1 \mathrm{E}^{\wedge}-19=\frac{e^{-(0.004 \cdot 60)} \cdot(0.004 \cdot 60)^{20}}{20!}$
13) Separation of distance between centers of mass of two bodies given gravitational forces $\sqrt{ }$
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{r}}=\sqrt{\frac{([\mathrm{g}]) \cdot \mathrm{m}_{1} \cdot \mathrm{~m}_{2}}{\mathrm{~F}_{\mathrm{g}}}}$
ex $138040.3 \mathrm{~m}=\sqrt{\frac{([\mathrm{g}]) \cdot 90 \mathrm{~kg} \cdot 110 \mathrm{~kg}}{5.095 \mathrm{E}^{\wedge}-6 \mathrm{~N}}}$

Variables Used

- [G] Gravitational Constant
- a Wave Amplitude (Meter)
- f Universal Constant
- $\mathbf{F}_{\mathbf{g}}$ Gravitational Forces Between Particles (Newton)
- GMT Greenwich Time Measured (Hour)
- k Phase Lag
- LMT Local Time Meridian (Hour)
- M Mass of the Moon (Kilogram)
- m_{1} Mass of Body A (Kilogram)
- \mathbf{m}_{2} Mass of Body B (Kilogram)
- $\mathbf{M}_{\text {sun }}$ Mass of the Sun (Kilogram)
- $\mathbf{N}_{\mathbf{s}}$ Number of Storm Events
- $\mathbf{P}_{\mathbf{N}=\mathbf{n}}$ Poisson Probability Law for the number of storms
- $\mathbf{P}_{\mathbf{s}}$ Harmonic Polynomial Expansion Terms for Sun
- pL Local and Greenwich Phase Arguments
- r Distance between Two Masses (Meter)
- $\mathbf{R}_{\mathbf{M}}$ Mean Radius of the Earth (Kilometer)
- $\mathbf{r}_{\mathbf{s}}$ Distance (Kilometer)
- $\mathbf{r}_{\mathbf{S} / \mathrm{MX}}$ Distance of Point (Kilometer)
- T Number of Years
- T_{L} Local Time (Hour)
- $\mathbf{V}_{\mathbf{M}}$ Attractive Force Potentials for Moon
- $\mathbf{V}_{\mathbf{S}}$ Attractive Force Potentials for Sun
- K' Modified form of the Epoch
- $\boldsymbol{\lambda}$ Mean Frequency of Observed Events

Constants, Functions, Measurements used

- Constant: [Earth-M], 5.9722E+24

Earth mass

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Constant: e, 2.71828182845904523536028747135266249

Napier's constant

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Kilometer (km), Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Time in Hour (h)

Time Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

Check other formula lists

- Attractive Force Potentials Formulas
- Tide Producing Forces Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

