

Important Formulas of Mooring Forces

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 29 Important Formulas of Mooring Forces

Important Formulas of Mooring Forces &

1) Angle of Current Relative to Longitudinal Axis of Vessel given Reynolds Number

$$\left| heta_{
m c} = a \cos \! \left(rac{{
m Re}_{
m m} \cdot {
m v}^{'}}{{
m V}_{
m c} \cdot {
m l}_{
m wl}}
ight)
ight|$$

Open Calculator

ex
$$1.472717 = a \cos\left(\frac{200 \cdot 7.25 \mathrm{St}}{728.2461 \mathrm{m/h} \cdot 7.32 \mathrm{m}}\right)$$

2) Area Ratio given Expanded or Developed Blade Area of Propeller

$$\boxed{\mathbf{fx}} \mathbf{A}_{r} = l_{wl} \cdot \frac{B}{\mathbf{A}_{p} \cdot 0.838}$$

Open Calculator 🗗

ex
$$1.164678 = 7.32 \text{m} \cdot \frac{2 \text{m}}{15 \text{m}^2 \cdot 0.838}$$

3) Average Current Speed for Form Drag of Vessel

fx

Open Calculator

$$V = \sqrt{rac{F_{c,\, form}}{0.5} \cdot
ho_{water} \cdot C_{c,\, form} \cdot B \cdot T \cdot \cos(\theta_c)}$$

 $\boxed{\textbf{ex}} 1434.844 \text{m/s} = \sqrt{\frac{0.15 \text{kN}}{0.5} \cdot 1000 \text{kg/m}^3 \cdot 5 \cdot 2 \text{m} \cdot 1.68 \text{m} \cdot \cos(1.150)}$

4) Average Current Speed given Reynolds Number 🖸

 $\left| \mathbf{K} \right| \mathbf{V}_{\mathrm{c}} = rac{\mathrm{Re} \cdot \mathbf{v}}{l_{\mathrm{wl}}} \cdot \mathrm{cos}(\mathbf{ heta}_{\mathrm{c}})$

7.32m

5) Axial Tension or Load given Individual Stiffness of Mooring Line

fx $T_{n'} = \Delta l_n \cdot k_n$

Open Calculator

Open Calculator

Open Calculator

 $160 \text{kN} = 1600 \text{m} \cdot 100.0$

6) Coefficient of Drag for Winds Measured at 10 m given Drag Force due to Wind

$$\mathbf{E} \mathbf{C}_{\mathrm{D'}} = rac{\mathbf{F}_{\mathrm{D}}}{0.5 \cdot
ho_{\mathrm{air}} \cdot \mathbf{A} \cdot \mathrm{V}_{10}^2}$$

$$extbf{ex} 0.0024 = rac{37.0 ext{N}}{0.5 \cdot 1.225 ext{kg/m}^3 \cdot 52 ext{m}^2 \cdot \left(22 ext{m/s}
ight)^2}$$

7) Displacement of Vessel for Wetted Surface Area of Vessel

 $ext{D} = rac{ ext{T} \cdot \left(ext{S}^{'} - (1.7 \cdot ext{T} \cdot ext{l}_{ ext{wl}})
ight)}{35}$

 $27.79652 \mathrm{m}^{_3} = rac{1.68 \mathrm{m} \cdot (600 \mathrm{m}^{_2} - (1.7 \cdot 1.68 \mathrm{m} \cdot 7.32 \mathrm{m}))}{35}$

8) Drag Force due to Wind

 $\mathbf{F}_{\mathrm{D}} = 0.5 \cdot
ho_{\mathrm{air}} \cdot \mathrm{C_{D^{\prime}}} \cdot \mathrm{A} \cdot \mathrm{V_{10}^2}$

Open Calculator

 $\mathbf{ex} \left[38.5385 \mathrm{N} = 0.5 \cdot 1.225 \mathrm{kg/m^3} \cdot 0.0025 \cdot 52 \mathrm{m^2} \cdot \left(22 \mathrm{m/s} \right)^2 \right]$

9) Elongation in Mooring Line given Individual Stiffness of Mooring Line

 $\Delta l_{
m n} = rac{T_{
m n'}}{L} \Big|$

Open Calculator

= 1600m = $\frac{160$ kN}{100.0}

10) Elongation in Mooring Line given Percent Elongation in Mooring Line

$$\Delta
m l_{\eta^{\prime}} =
m ln \cdot \left(rac{\epsilon_{
m m}}{100}
ight)$$

Open Calculator

 $4.999m = 10m \cdot \left(\frac{49.99}{100}\right)$

11) Expanded or Developed Blade Area of Propeller

 \mathbf{f} $\mathbf{A}_{\mathrm{p}} = rac{l_{\mathrm{wl}} \cdot \mathbf{B}}{0.838} \cdot \mathbf{A}_{\mathrm{r}}$

Open Calculator

 $20.26539 \mathrm{m}^{_{2}} = \frac{7.32 \mathrm{m} \cdot 2 \mathrm{m}}{0.838} \cdot 1.16$

12) Form Drag Coefficient given Form Drag of Vessel

 $ext{KC}_{ ext{c, form}} = rac{ ext{F}_{ ext{c, form}}}{0.5 \cdot
ho_{ ext{water}} \cdot ext{B} \cdot ext{T} \cdot ext{V}_{ ext{c}}^2 \cdot ext{cos}(heta_{ ext{c}})}$

Open Calculator

ex

 $5.341361 = rac{0.15 \mathrm{kN}}{0.5 \cdot 1000 \mathrm{kg/m^3 \cdot 2m \cdot 1.68m \cdot (728.2461 m/h)^2 \cdot \cos(1.150)}}$

13) Individual Stiffness of Mooring Line

 $\mathbf{f}\mathbf{x} \mathbf{k}_{\mathrm{n'}} = rac{\mathrm{T}_{\mathrm{n'}}}{\Delta l_{\mathrm{n'}}}$

Open Calculator 🗗

14) Mass of Vessel given Virtual Mass of Vessel

fx $m = m_v - m_a$

Open Calculator

15) Projected Area of Vessel above Waterline given Drag Force due to Wind

 $extbf{A} = rac{ extbf{F}_{ ext{D}}}{0.5 \cdot
ho_{ ext{air}} \cdot ext{C}_{ ext{D}}, \cdot ext{V}_{10}^2}$

Open Calculator 🗗

16) Propeller Drag Coefficient given Propeller Drag

 $ext{K} egin{aligned} ext{C}_{ ext{c, prop}} &= rac{ ext{F}_{ ext{c, prop}}}{0.5 \cdot
ho_{ ext{water}} \cdot ext{A}_{ ext{p}} \cdot ext{V}_{ ext{c}}^2 \cdot ext{cos}(heta_{ ext{c}}) \end{aligned}$

Open Calculator

 $\boxed{1.986132 = \frac{249 \mathrm{N}}{0.5 \cdot 1000 \mathrm{kg/m^3} \cdot 15 \mathrm{m^2} \cdot (728.2461 \mathrm{m/h})^2 \cdot \cos(1.150)} }$

17) Propeller Drag due to Form Drag of Propeller with Locked Shaft

Open Calculator

 $m F_{c,\,prop} = 0.5 \cdot
ho_{water} \cdot C_{c,\,prop} \cdot A_{p} \cdot V_{c}^{2} \cdot \cos(heta_{c})$

ex $249.485 \mathrm{N} = 0.5 \cdot 1000 \mathrm{kg/m^3} \cdot 1.99 \cdot 15 \mathrm{m^2} \cdot (728.2461 \mathrm{m/h})^2 \cdot \cos(1.150)$

18) Reynolds Number given Skin Friction Coefficient

 $ext{Re}_{\mathrm{s}} = rac{\mathrm{V}_{\mathrm{c}} \cdot l_{\mathrm{wl}} \cdot \cos(heta_{\mathrm{c}})}{v}$

Open Calculator

19) Skin Friction Coefficient given Skin Friction of Vessel

 $c_{
m fx} = rac{F_{
m c,fric}}{0.5 \cdot
ho_{
m water} \cdot {
m S} \cdot {
m V}_{
m cs}^2 \cdot {
m cos}(heta_{
m c})}$ Open Calculator $m{\mathcal{C}}$

20) Skin Friction of Vessel due to Flow of Water over Wetted Surface Area of Vessel

of Vessel $m{\Sigma}$ $F_{c, fric} = 0.5 \cdot
ho_{water} \cdot c_f \cdot S \cdot V_{cs}^2 \cdot \cos(heta_c)$ Open Calculator $m{C}$

 $= 39.7638 = 0.5 \cdot 1000 \text{kg/m}^3 \cdot 0.72 \cdot 4 \text{m}^2 \cdot (0.26 \text{m/s})^2 \cdot \cos(1.150)$

21) Undamped Natural Period of Vessel

$$\mathbf{K} \mathbf{T}_{\mathrm{n}} = 2 \cdot \pi \cdot \left(\sqrt{rac{\mathrm{m}_{\mathrm{v}}}{\mathrm{k}_{\mathrm{tot}}}}
ight)$$

Open Calculator 🗗

$$oxed{ex} 0.174533 ext{h} = 2 \cdot \pi \cdot \left(\sqrt{rac{100 ext{kN}}{10.0 ext{N/m}}}
ight)$$

22) Velocity at Desired Elevation

Open Calculator

 $\left| \mathbf{K}
ight| V_{\mathrm{z}} = V_{10} \cdot \left(rac{\mathrm{z}}{10}
ight)^{0.11}$

 $\left| 28.62584 \mathrm{m/s} = 22 \mathrm{m/s} \cdot \left(\frac{109.50 \mathrm{m}}{10} \right)^{0.11} \right|$

23) Vessel Draft given Form Drag of Vessel 🛂

Open Calculator

 $T = rac{F_{c,\, \mathrm{form}}}{0.5 \cdot
ho_{\mathrm{water}} \cdot C_{c,\, \mathrm{form}} \cdot B \cdot V_{c}^{2} \cdot \cos(heta_{c})}$

0.15kN $= \frac{1.794697 \text{m}}{0.5 \cdot 1000 \text{kg/m}^3 \cdot 5 \cdot 2 \text{m} \cdot (728.2461 \text{m/h})^2 \cdot \cos(1.150)}$

24) Virtual Mass of Vessel

fx $m_v = m + m_a$

Open Calculator

= 100 kN = 80 kN + 20 kN

25) Waterline Length of Vessel for Wetted Surface Area of Vessel 🗗

 $\mathbf{f}_{\mathbf{w}} egin{align} \mathbf{l}_{\mathrm{wl}} = rac{\mathbf{S}^{'} - \left(35 \cdot rac{\mathrm{D}}{\mathrm{T}^{'}}
ight)}{1.7} \cdot \mathbf{T}^{'} \ \end{array}$

Open Calculator

26) Waterline Length of Vessel given Expanded or Developed Blade Area

 $l_{
m wl} = rac{
m A_p \cdot 0.838 \cdot A_r}{
m B}$

Open Calculator 🗗

27) Waterline Length of Vessel given Reynolds Number

 $l_{wl} = rac{\mathrm{Re} \cdot \mathrm{v}^{'}}{\mathrm{V_c}} \cdot \mathrm{cos}(\mathrm{ heta_c})$

Open Calculator

 $= \frac{5000 \cdot 7.25 \mathrm{St}}{728.2461 \mathrm{m/h}} \cdot \cos(1.150)$

28) Wetted Surface Area of Vessel

 $\mathbf{K}^{'} = (1.7 \cdot \mathrm{T} \cdot \mathrm{l_{wl}}) + \left(rac{35 \cdot \mathrm{D}}{\mathrm{T}}
ight)$

Open Calculator 🗗

 $oxed{ex} \left[583.4059 \mathrm{m}^{_2} = (1.7 \cdot 1.68 \mathrm{m} \cdot 7.32 \mathrm{m}) + \left(rac{35 \cdot 27 \mathrm{m}^{_3}}{1.68 \mathrm{m}}
ight)
ight]$

29) Wind Speed at Standard Elevation of 10 m given Velocity at Desired Elevation

Open Calculator 🗗

$$m = 20.36621 m/s = rac{26.5 m/s}{\left(rac{109.50 m}{10}
ight)^{0.11}}$$

Variables Used

- A Projected Area of the Vessel (Square Meter)
- Ap Expanded or Developed Blade Area of a Propeller (Square Meter)
- Ar Area Ratio
- **B** Vessel Beam (Meter)
- C_{c. form} Form Drag Coefficient
- C_{c. prop} Propeller Drag Coefficient
- C_{D'} Coefficient of Drag
- Cf Skin Friction Coefficient
- D Displacement of a Vessel (Cubic Meter)
- Fc. form Form Drag of a Vessel (Kilonewton)
- F_{c. prop} Vessel Propeller Drag (Newton)
- F_{c.fric} Skin Friction of a Vessel
- **F**_D Drag Force (Newton)
- k_n Individual Stiffness of a Mooring Line
- k_n· Individual Mooring Line Stiffness
- k_{tot} Effective Spring Constant (Newton per Meter)
- I_{wl} Waterline Length of a Vessel (Meter)
- In Length of Mooring Line (Meter)
- m Mass of a Vessel (Kilonewton)
- m_a Mass of Vessel due to Inertial Effects (Kilonewton)
- m_v Virtual Mass of the Ship (Kilonewton)

- Re Reynolds Number
- Rem Reynolds Number for Mooring Forces
- Res Reynolds Number for Skin Friction
- **S** Wetted Surface Area (Square Meter)
- S Wetted Surface Area of Vessel (Square Meter)
- T Vessel Draft (Meter)
- T_n Undamped Natural Period of a Vessel (Hour)
- T_{n'} Axial Tension or Load on a Mooring Line (Kilonewton)
- T Draft in Vessel (Meter)
- V Longshore Current Speed (Meter per Second)
- V₁₀ Wind Speed at Height of 10 m (Meter per Second)
- V_c Average Current Speed (Meter per Hour)
- V_{cs} Average Current Speed for Skin Friction (Meter per Second)
- V_z Velocity at the Desired Elevation z (Meter per Second)
- **z** Desired Elevation (Meter)
- ΔI_n Mooring Line Elongation (Meter)
- ΔI_n· Elongation in the Mooring Line (Meter)
- ε_m Percent Elongation in a Mooring Line
- θ_c Angle of the Current
- v Kinematic Viscosity in Stokes (Stokes)
- Pair Air Density (Kilogram per Cubic Meter)
- Pwater Water Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: acos, acos(Number)

 The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Hour (h)

 Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³)
 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Speed in Meter per Hour (m/h), Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N)
 Force Unit Conversion
- Measurement: Surface Tension in Newton per Meter (N/m)
 Surface Tension Unit Conversion

- Measurement: Kinematic Viscosity in Stokes (St)

 Kinematic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

 Density Unit Conversion

Check other formula lists

- Important Formulas of Harbor Hydrodynamics
- Wave Transmission Coefficient and Water Surface Amplitude Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/26/2024 | 8:53:15 AM UTC

Please leave your feedback here...

