

Important Formulas of Harbor Oscillation

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Important Formulas of Harbor Oscillation

Important Formulas of Harbor Oscillation C

1) Additional Length

fx
$$l'_{c} = \left([g] \cdot A_{C} \cdot \frac{\left(\frac{T_{r}2}{2} \cdot \pi \right)^{2}}{A_{s}} \right) - L_{ch}$$

ex
$$20.08745 \mathrm{m} = \left([\mathrm{g}] \cdot 0.20 \mathrm{m}^2 \cdot \frac{\left(\frac{19.3\mathrm{s}}{2} \cdot \pi\right)^2}{30 \mathrm{m}^2} \right) - 40.0 \mathrm{m}^2$$

2) Average Horizontal Velocity at Node 子

fx
$$V' = rac{H_w \cdot \lambda}{\pi} \cdot d \cdot T_n$$

Open Calculator

ex
$$49.75747 \mathrm{m/s} = rac{1.01 \mathrm{m} \cdot 26.8 \mathrm{m}}{\pi} \cdot 1.05 \mathrm{m} \cdot 5.50 \mathrm{s}$$

3) Basin Length along axis given Maximum Oscillation Period corresponding to Fundamental Mode

$$f_{X} L_{ba} = T_{1} \cdot \frac{\sqrt{[g] \cdot D}}{2}$$

$$e_{X} 4.230733m = 0.013min \cdot \frac{\sqrt{[g] \cdot 12m}}{2}$$

$$f_{X} 4.230733m = 0.013min \cdot \frac{\sqrt{[g] \cdot 12m}}{2}$$

$$f_{X} L_{b} = \frac{T_{n} \cdot (1 + (2 \cdot N)) \cdot \sqrt{[g] \cdot D_{w}}}{4}$$

$$f_{X} L_{b} = \frac{T_{n} \cdot (1 + (2 \cdot N)) \cdot \sqrt{[g] \cdot D_{w}}}{4}$$

$$f_{X} 159.1424m = \frac{5.50s \cdot (1 + (2 \cdot 1.3)) \cdot \sqrt{[g] \cdot 105.4m}}{4}$$

$$f_{X} V_{max} = \left(\frac{H_{w}}{2}\right) \cdot \sqrt{\frac{[g]}{D_{w}}}$$

$$f_{X} V_{max} = \left(\frac{H_{w}}{2}\right) \cdot \sqrt{\frac{[g]}{D_{w}}}$$

$$f_{X} V_{max} = \left(\frac{H_{w}}{2}\right) \cdot \sqrt{\frac{[g]}{D_{w}}}$$

Open Calculator

9) Resonant Period for Helmholtz Mode 🚰

10) Standing Wave Height given Maximum Horizontal Velocity at Node 🗹

11) Water Depth given Maximum Horizontal Velocity at Node 🕑

Variables Used

- A_b Surface Area of Bay (Square Meter)
- A_C Cross Sectional Area (Square Meter)
- A_s Surface Area (Square Meter)
- **d** Water Depth at Harbor (*Meter*)
- D Water Depth (Meter)
- **D**_w Depth of Water (Meter)
- H_w Standing Wave Height of Ocean (Meter)
- I₁ Basin Dimensions along the X-axis (Meter)
- **I**₂ Basin Dimensions along the Y-axis (*Meter*)
- L_b Length of Open Basin along Axis (Meter)
- LB Basin Length (Meter)
- Lba Length of Basin along Axis (Meter)
- I'c Additional Length of the Channel (Meter)
- L_{ch} Channel Length (Helmholtz Mode) (Meter)
- **m** Number of Nodes along the Y-axis of Basin
- **n** Number of Nodes along the X-axis of Basin
- N Number of Nodes along the Axis of a Basin
- **T₁** Maximum Oscillation Period (*Minute*)
- T_H Resonant Period for Helmholtz Mode (Second)
- T_n Natural Free Oscillating Period of a Basin (Second)
- T_r2 Resonant Period (Second)

- V' Average Horizontal Velocity at a Node (Meter per Second)
- V_{max} Maximum Horizontal Velocity at a Node (Meter per Hour)
- **λ** Wavelength (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s), Minute (min) *Time Unit Conversion*
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s), Meter per Hour (m/h)
 Speed Unit Conversion

Methods to Predict Channel Nearshore Currents Formulas

Wave Setup Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/28/2024 | 9:13:09 AM UTC

Shoaling Formulas

Please leave your feedback here ...

