
calculatoratoz.com

unitsconverters.com

Important Formulas of Harbor Oscillation

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Important Formulas of Harbor Oscillation

Important Formulas of Harbor Oscillation ©

1) Additional Length

$\mathrm{fx}_{\mathrm{x}} \mathrm{l}_{\mathrm{c}}=\left([\mathrm{g}] \cdot \mathrm{A}_{\mathrm{C}} \cdot \frac{\left(\frac{\mathrm{T}_{\mathrm{r}}}{2} \cdot \pi\right)^{2}}{\mathrm{~A}_{\mathrm{s}}}\right)-\mathrm{L}_{\mathrm{ch}}$
ex $20.08745 \mathrm{~m}=\left([\mathrm{g}] \cdot 0.20 \mathrm{~m}^{2} \cdot \frac{\left(\frac{19.3 \mathrm{~s}}{2} \cdot \pi\right)^{2}}{30 \mathrm{~m}^{2}}\right)-40.0 \mathrm{~m}$
2) Average Horizontal Velocity at Node
$\mathrm{fx} \mathrm{V}^{\prime}=\frac{\mathrm{H}_{\mathrm{w}} \cdot \lambda}{\pi} \cdot \mathrm{d} \cdot \mathrm{T}_{\mathrm{n}}$
ex $49.75747 \mathrm{~m} / \mathrm{s}=\frac{1.01 \mathrm{~m} \cdot 26.8 \mathrm{~m}}{\pi} \cdot 1.05 \mathrm{~m} \cdot 5.50 \mathrm{~s}$
3) Basin Length along axis given Maximum Oscillation Period corresponding to Fundamental Mode

ex $4.230733 \mathrm{~m}=0.013 \mathrm{~min} \cdot \frac{\sqrt{[\mathrm{~g}] \cdot 12 \mathrm{~m}}}{2}$
4) Basin Length along Axis in Open Basin
$f \mathrm{x} \mathrm{L}_{\mathrm{b}}=\frac{\mathrm{T}_{\mathrm{n}} \cdot(1+(2 \cdot \mathrm{~N})) \cdot \sqrt{[\mathrm{g}] \cdot \mathrm{D}_{\mathrm{w}}}}{4}$
Open Calculator
ex $159.1424 \mathrm{~m}=\frac{5.50 \mathrm{~s} \cdot(1+(2 \cdot 1.3)) \cdot \sqrt{[\mathrm{g}] \cdot 105.4 \mathrm{~m}}}{4}$
5) Maximum Horizontal Velocity at Node
$f \mathrm{fx} \mathrm{V}_{\max }=\left(\frac{\mathrm{H}_{\mathrm{w}}}{2}\right) \cdot \sqrt{\frac{[\mathrm{g}]}{\mathrm{D}_{\mathrm{w}}}}$
ex $554.5413 \mathrm{~m} / \mathrm{h}=\left(\frac{1.01 \mathrm{~m}}{2}\right) \cdot \sqrt{\frac{[\mathrm{g}]}{105.4 \mathrm{~m}}}$
6) Natural Free Oscillation Period
fx
Open Calculator
$\mathrm{T}_{\mathrm{n}}=\left(\frac{2}{\sqrt{[\mathrm{~g}] \cdot \mathrm{d}}}\right) \cdot\left(\left(\frac{\mathrm{n}}{\mathrm{l}_{1}}\right)^{2}+\left(\frac{\mathrm{m}}{\mathrm{l}_{2}}\right)^{2}\right)^{-0.5}$
ex $5.807563 \mathrm{~s}=\left(\frac{2}{\sqrt{[\mathrm{~g}] \cdot 1.05 \mathrm{~m}}}\right) \cdot\left(\left(\frac{3}{35.23 \mathrm{~m}}\right)^{2}+\left(\frac{2.0}{30.62 \mathrm{~m}}\right)^{2}\right)^{-0.5}$
7) Natural Free Oscillation Period for Closed Basin $\sqrt{ }$
fx $\mathrm{T}_{\mathrm{n}}=\frac{2 \cdot \mathrm{~L}_{\mathrm{B}}}{\mathrm{N} \cdot \sqrt{[\mathrm{g}] \cdot \mathrm{D}_{\mathrm{w}}}}$
Open Calculator
ex $8.613477 \mathrm{~s}=\frac{2 \cdot 180 \mathrm{~m}}{1.3 \cdot \sqrt{[\mathrm{~g}] \cdot 105.4 \mathrm{~m}}}$
8) Natural Free Oscillation Period for Open Basin

$$
\begin{aligned}
& \mathbf{f x} \mathrm{T}_{\mathrm{n}}=4 \cdot \frac{\mathrm{~L}_{\mathrm{B}}}{(1+(2 \cdot \mathrm{~N})) \cdot \sqrt{[\mathrm{g}] \cdot \mathrm{D}_{\mathrm{w}}}} \\
& \mathbf{e x ~} 6.220845 \mathrm{~s}=4 \cdot \frac{180 \mathrm{~m}}{(1+(2 \cdot 1.3)) \cdot \sqrt{[\mathrm{g}] \cdot 105.4 \mathrm{~m}}}
\end{aligned}
$$

Open Calculator
9) Resonant Period for Helmholtz Mode
$f \mathbf{x} \mathrm{~T}_{\mathrm{H}}=(2 \cdot \pi) \cdot \sqrt{\left(\mathrm{L}_{\mathrm{ch}}+\mathrm{l}_{\mathrm{c}}^{\prime}\right) \cdot \frac{\mathrm{A}_{\mathrm{b}}}{[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{C}}}}$

Open Calculator

ex $42.56379 \mathrm{~s}=(2 \cdot \pi) \cdot \sqrt{(40.0 \mathrm{~m}+20.0 \mathrm{~m}) \cdot \frac{1.5001 \mathrm{~m}^{2}}{[\mathrm{~g}] \cdot 0.20 \mathrm{~m}^{2}}}$
10) Standing Wave Height given Maximum Horizontal Velocity at Node
$f x H_{w}=\left(\frac{V_{\max }}{\sqrt{\frac{[g]}{\mathrm{D}_{\mathrm{w}}}}}\right) \cdot 2$
ex $1.01 \mathrm{~m}=\left(\frac{554.5413 \mathrm{~m} / \mathrm{h}}{\sqrt{\frac{[\mathrm{g}]}{105.4 \mathrm{~m}}}}\right) \cdot 2$
11) Water Depth given Maximum Horizontal Velocity at Node
$\mathrm{fx} \mathrm{D}_{\mathrm{w}}=\frac{[\mathrm{g}]}{\left(\frac{\mathrm{V}_{\max }}{\frac{\mathrm{H}_{\mathrm{w}}}{2}}\right)^{2}}$

$$
\operatorname{ex} 105.4 \mathrm{~m}=\frac{[\mathrm{g}]}{\left(\frac{554.5413 \mathrm{~m} / \mathrm{h}}{\frac{1.0 \mathrm{~m}}{2}}\right)^{2}}
$$

Variables Used

- $\mathbf{A}_{\mathbf{b}}$ Surface Area of Bay (Square Meter)
- $\mathbf{A}_{\mathbf{C}}$ Cross Sectional Area (Square Meter)
- $\mathbf{A}_{\mathbf{s}}$ Surface Area (Square Meter)
- d Water Depth at Harbor (Meter)
- D Water Depth (Meter)
- $\mathbf{D}_{\mathbf{w}}$ Depth of Water (Meter)
- $\mathbf{H}_{\mathbf{w}}$ Standing Wave Height of Ocean (Meter)
- I_{1} Basin Dimensions along the X -axis (Meter)
- \mathbf{I}_{2} Basin Dimensions along the Y -axis (Meter)
- L_{b} Length of Open Basin along Axis (Meter)
- L_{B} Basin Length (Meter)
- $L_{b a}$ Length of Basin along Axis (Meter)
- I' ${ }_{\mathbf{C}}$ Additional Length of the Channel (Meter)
- $L_{c h}$ Channel Length (Helmholtz Mode) (Meter)
- m Number of Nodes along the Y-axis of Basin
- \mathbf{n} Number of Nodes along the X-axis of Basin
- \mathbf{N} Number of Nodes along the Axis of a Basin
- T_{1} Maximum Oscillation Period (Minute)
- $\mathbf{T}_{\mathbf{H}}$ Resonant Period for Helmholtz Mode (Second)
- $\mathbf{T}_{\mathbf{n}}$ Natural Free Oscillating Period of a Basin (Second)
- $\mathrm{T}_{\mathrm{r}} 2$ Resonant Period (Second)
- V' Average Horizontal Velocity at a Node (Meter per Second)
- $\mathbf{V}_{\text {max }}$ Maximum Horizontal Velocity at a Node (Meter per Hour)
- $\boldsymbol{\lambda}$ Wavelength (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s), Minute (min) Time Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s), Meter per Hour (m/h) Speed Unit Conversion

Check other formula lists

- Methods to Predict Channel Shoaling Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/28/2024 | 9:13:09 AM UTC
Please leave your feedback here...

