

Prediction of Tides and Tidal Rivers Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 14 Prediction of Tides and Tidal Rivers Formulas

Prediction of Tides and Tidal Rivers 🕑

Harmonic Analysis and Prediction of Tides 🕑

4) Principal Lunar Semi-Diurnal Constituent given Form Number 🕑

fx
$$M_2 = \left(\frac{O_1 + K_1}{F}\right) - S_2$$

ex $8.001773 = \left(\frac{3+12}{0.7894}\right) - 11$

5) Principal Solar Semi-Diurnal Constituent given Form Number 🚰

ex
$$11.00177 = \left(rac{3+12}{0.7894}
ight) - 8$$

6) Radian Frequencies for Prediction of Tides 🕑

fx
$$\omega = 2 \cdot \frac{\pi}{T_n}$$

ex $6.200104 \text{rad/s} = 2 \cdot \frac{\pi}{1.0134 \text{s}}$
7) Time Period of n'th Contribution of Tide Prediction given Radian

fx
$$T_n = 2 \cdot \frac{\pi}{\omega}$$

ex $1.013417s = 2 \cdot \frac{\pi}{6.2 rad/s}$

Frequencies

Open Calculator

Tidal Rivers 🕑

River Navigation

8) Average Depth given Friction Factor for Propagation Velocity of Tide Wave

$$\mathbf{fx} \mathbf{h}' = \frac{\mathbf{T} \cdot \mathbf{8} \cdot [\mathbf{g}] \cdot \mathbf{V}_{\max}}{\mathbf{6} \cdot \pi^2 \cdot \mathbf{C}^2 \cdot \tan\left(\frac{\Theta_f}{0.5}\right)}$$

$$\mathbf{ex} 26.00001 \mathbf{m} = \frac{130 \mathbf{s} \cdot \mathbf{8} \cdot [\mathbf{g}] \cdot 58.832 \mathbf{m}^3 / \mathbf{s}}{\mathbf{6} \cdot \pi^2 \cdot (15)^2 \cdot \tan\left(\frac{30^{\circ}}{0.5}\right)}$$

9) Average Depth given Propagation Velocity of Tide Wave

fx
$$\mathbf{h'} = rac{\mathbf{v}^2}{\left[\mathrm{g}]\cdot\left(1-\mathrm{tan}(\Theta_{\mathrm{f}})^2
ight)}$$

ex 27.05664m =
$$\frac{(13.3 \text{m/s})^2}{[\text{g}] \cdot (1 - \tan(30^\circ)^2)}$$

Open Calculator 🕑

Open Calculator

10) Chezy's Friction Factor given Friction Factor for Propagation Velocity of Tide Wave

$$fx \quad C = \sqrt{\frac{T \cdot 8 \cdot [g] \cdot V_{max}}{6 \cdot \pi^2 \cdot h' \cdot \tan\left(\frac{\Theta_f}{0.5}\right)}}$$

$$ex \quad 15 = \sqrt{\frac{130s \cdot 8 \cdot [g] \cdot 58.832m^3/s}{6 \cdot \pi^2 \cdot 26m \cdot \tan\left(\frac{30^\circ}{0.5}\right)}}$$

$$fx \quad \Theta_f = 0.5 \cdot a \tan\left(T \cdot 8 \cdot [g] \cdot \frac{V_{max}}{6 \cdot \pi^2 \cdot C^2 \cdot h'}\right) \quad Open Calculator C$$

$$ex \quad 30^\circ = 0.5 \cdot a \tan\left(130s \cdot 8 \cdot [g] \cdot \frac{58.832m^3/s}{6 \cdot \pi^2 \cdot (15)^2 \cdot 26m}\right)$$

12) Maximum Flood Current given Friction Factor for Propagation Velocity of Tide Wave

$$f_{\mathbf{X}} \mathbf{V}_{\max} = \frac{6 \cdot \pi^2 \cdot \mathbf{C}^2 \cdot \mathbf{h}' \cdot \tan\left(\frac{\Theta_f}{0.5}\right)}{\mathbf{T} \cdot 8 \cdot [\mathbf{g}]}$$

$$e_{\mathbf{X}} 58.83198 \mathrm{m}^3/\mathrm{s} = \frac{6 \cdot \pi^2 \cdot (15)^2 \cdot 26\mathrm{m} \cdot \tan\left(\frac{30^{\circ}}{0.5}\right)}{130\mathrm{s} \cdot 8 \cdot [\mathbf{g}]}$$

Open Calculator

 $\begin{array}{||c||} \hline \textbf{ex} 130 \textbf{s} = \frac{6 \cdot \left(\pi^2\right) \cdot \left(\left(15\right)^2\right) \cdot 26 \textbf{m} \cdot \tan\left(\frac{30^{\circ}}{0.5}\right)}{8 \cdot [\textbf{g}] \cdot 58.832 \textbf{m}^3/\textbf{s}} \end{array}$

Variables Used

- C Chezy's Constant
- F Form Number
- h' Average Depth (Meter)
- K1 Lunar Solar Constituent
- M₂ Principal Lunar Semi-Diurnal Constituent
- O1 Principal Lunar Diurnal Constituent
- S2 Principal Solar Semi-Diurnal Constituent
- T Tidal Period (Second)
- T_n Period of the nth Contribution (Second)
- **v** Wave Speed (Meter per Second)
- V_{max} Maximum Flood Current (Cubic Meter per Second)
- Of Friction Factor in Terms of Degree (Degree)
- **ω** Wave Angular Frequency (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s) Angular Frequency Unit Conversion

Check other formula lists

- Prediction of Tides and Tidal Rivers Formulas
- Salinity Variations with Tide
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/21/2024 | 5:26:31 AM UTC

Please leave your feedback here...

