
calculatoratoz.com

unitsconverters.com

Prediction of Tides and Tidal Rivers Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Prediction of Tides and Tidal Rivers Formulas

Prediction of Tides and Tidal Rivers \mathbb{C}

Harmonic Analysis and Prediction of Tides E

1) Form Number
$\mathrm{fx} \mathrm{F}=\frac{\mathrm{O}_{1}+\mathrm{K}_{1}}{\mathrm{M}_{2}+\mathrm{S}_{2}}$
ex $0.789474=\frac{3+12}{8+11}$
2) Lunar-Solar Constituent given Form Number
$\mathrm{fx} \mathrm{K}_{1}=\mathrm{F} \cdot\left(\mathrm{M}_{2}+\mathrm{S}_{2}\right)-\mathrm{O}_{1}$
Open Calculator
ex $11.9986=0.7894 \cdot(8+11)-3$
3) Principal Lunar Diurnal Constituent given Form Number
$f \mathrm{fx} \mathrm{O}_{1}=\mathrm{F} \cdot\left(\mathrm{M}_{2}+\mathrm{S}_{2}\right)-\mathrm{K}_{1}$
ex $2.9986=0.7894 \cdot(8+11)-12$
4) Principal Lunar Semi-Diurnal Constituent given Form Number
$f \mathrm{x} \mathrm{M}_{2}=\left(\frac{\mathrm{O}_{1}+\mathrm{K}_{1}}{\mathrm{~F}}\right)-\mathrm{S}_{2}$
Open Calculator
ex $8.001773=\left(\frac{3+12}{0.7894}\right)-11$
5) Principal Solar Semi-Diurnal Constituent given Form Number
fx $\mathrm{S}_{2}=\left(\frac{\mathrm{O}_{1}+\mathrm{K}_{1}}{\mathrm{~F}}\right)-\mathrm{M}_{2}$
Open Calculator
ex $11.00177=\left(\frac{3+12}{0.7894}\right)-8$
6) Radian Frequencies for Prediction of Tides
$f x \omega=2 \cdot \frac{\pi}{T_{n}}$
Open Calculator
ex $6.200104 \mathrm{rad} / \mathrm{s}=2 \cdot \frac{\pi}{1.0134 \mathrm{~s}}$
7) Time Period of n'th Contribution of Tide Prediction given Radian Frequencies
$f_{\mathrm{x}} \mathrm{T}_{\mathrm{n}}=2 \cdot \frac{\pi}{\omega}$
Open Calculator
ex $1.013417 \mathrm{~s}=2 \cdot \frac{\pi}{6.2 \mathrm{rad} / \mathrm{s}}$

Tidal Rivers

River Navigation

8) Average Depth given Friction Factor for Propagation Velocity of Tide Wave
$f \mathrm{fx} \mathrm{h}^{\prime}=\frac{\mathrm{T} \cdot 8 \cdot[\mathrm{~g}] \cdot \mathrm{V}_{\max }}{6 \cdot \pi^{2} \cdot \mathrm{C}^{2} \cdot \tan \left(\frac{\Theta_{\mathrm{f}}}{0.5}\right)}$

$$
\mathrm{ex} 26.00001 \mathrm{~m}=\frac{130 \mathrm{~s} \cdot 8 \cdot[\mathrm{~g}] \cdot 58.832 \mathrm{~m}^{3} / \mathrm{s}}{6 \cdot \pi^{2} \cdot(15)^{2} \cdot \tan \left(\frac{30^{\circ}}{0.5}\right)}
$$

9) Average Depth given Propagation Velocity of Tide Wave

$\operatorname{ex} 27.05664 \mathrm{~m}=\frac{(13.3 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}] \cdot\left(1-\tan \left(30^{\circ}\right)^{2}\right)}$
10) Chezy's Friction Factor given Friction Factor for Propagation Velocity of Tide Wave
$f_{\mathbf{x}} \mathrm{C}=\sqrt{\frac{\mathrm{T} \cdot 8 \cdot[\mathrm{~g}] \cdot \mathrm{V}_{\max }}{6 \cdot \pi^{2} \cdot \mathrm{~h}^{\prime} \cdot \tan \left(\frac{\Theta_{\mathrm{f}}}{0.5}\right)}}$
Open Calculator
$\boldsymbol{e x} 15=\sqrt{\frac{130 \mathrm{~s} \cdot 8 \cdot[\mathrm{~g}] \cdot 58.832 \mathrm{~m}^{3} / \mathrm{s}}{6 \cdot \pi^{2} \cdot 26 \mathrm{~m} \cdot \tan \left(\frac{30^{\circ}}{0.5}\right)}}$
11) Friction Factor for Propagation Velocity of Tide Wave
$f_{\mathrm{x}} \Theta_{\mathrm{f}}=0.5 \cdot a \tan \left(\mathrm{~T} \cdot 8 \cdot[\mathrm{~g}] \cdot \frac{\mathrm{V}_{\max }}{6 \cdot \pi^{2} \cdot \mathrm{C}^{2} \cdot \mathrm{~h}^{\prime}}\right)$
Open Calculator
$\mathrm{ex} 30^{\circ}=0.5 \cdot a \tan \left(130 \mathrm{~s} \cdot 8 \cdot[\mathrm{~g}] \cdot \frac{58.832 \mathrm{~m}^{3} / \mathrm{s}}{6 \cdot \pi^{2} \cdot(15)^{2} \cdot 26 \mathrm{~m}}\right)$
12) Maximum Flood Current given Friction Factor for Propagation Velocity of Tide Wave
$\mathrm{fx} \mathrm{V}_{\text {max }}=\frac{\mathrm{T} \cdot 8 \cdot[\mathrm{~g}]}{}$
Open Calculator
ex $58.83198 \mathrm{~m}^{3} / \mathrm{s}=\frac{6 \cdot \pi^{2} \cdot(15)^{2} \cdot 26 \mathrm{~m} \cdot \tan \left(\frac{30^{\circ}}{0.5}\right)}{130 \mathrm{~s} \cdot 8 \cdot[\mathrm{~g}]}$
13) Propagation velocity of tide wave
$f_{\mathrm{x}} \mathrm{v}=\sqrt{[\mathrm{g}] \cdot \mathrm{h}^{\prime} \cdot\left(1-\tan \left(\Theta_{\mathrm{f}}\right)^{2}\right)}$

Open Calculator

ex $13.03771 \mathrm{~m} / \mathrm{s}=\sqrt{[\mathrm{g}] \cdot 26 \mathrm{~m} \cdot\left(1-\tan \left(30^{\circ}\right)^{2}\right)}$
14) Tidal Period for Friction Factor and Propagation Velocity of Tide Wave G

$$
f \times T=\frac{6 \cdot\left(\pi^{2}\right) \cdot\left(\mathrm{C}^{2}\right) \cdot \mathrm{h}^{\prime} \cdot \tan \left(\frac{\Theta_{\mathrm{f}}}{0.5}\right)}{8 \cdot[\mathrm{~g}] \cdot \mathrm{V}_{\max }}
$$

$\operatorname{ex} 130 \mathrm{~s}=\frac{6 \cdot\left(\pi^{2}\right) \cdot\left((15)^{2}\right) \cdot 26 \mathrm{~m} \cdot \tan \left(\frac{30^{\circ}}{0.5}\right)}{8 \cdot[\mathrm{~g}] \cdot 58.832 \mathrm{~m}^{3} / \mathrm{s}}$

Variables Used

- C Chezy's Constant
- F Form Number
- h' Average Depth (Meter)
- K \mathbf{K}_{1} Lunar Solar Constituent
- \mathbf{M}_{2} Principal Lunar Semi-Diurnal Constituent
- \mathbf{O}_{1} Principal Lunar Diurnal Constituent
- $\mathbf{S}_{\mathbf{2}}$ Principal Solar Semi-Diurnal Constituent
- T Tidal Period (Second)
- $\mathbf{T}_{\mathbf{n}}$ Period of the nth Contribution (Second)
- V Wave Speed (Meter per Second)
- $\mathbf{V}_{\text {max }}$ Maximum Flood Current (Cubic Meter per Second)
- $\boldsymbol{\Theta}_{\mathbf{f}}$ Friction Factor in Terms of Degree (Degree)
- $\boldsymbol{\omega}$ Wave Angular Frequency (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: atan, atan(Number)

Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: tan, tan(Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion $\sqrt{ }$

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s) Angular Frequency Unit Conversion

Check other formula lists

- Prediction of Tides and Tidal Rivers Formulas \mathcal{Z}
- Salinity Variations with Tide Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

