

Important Formulas of Snub Dodecahedron

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Important Formulas of Snub Dodecahedron

Important Formulas of Snub Dodecahedron

1) Circumsphere Radius of Snub Dodecahedron

 $m r_c = rac{\sqrt{rac{2-0.94315125924}{1-0.94315125924}}}{2} \cdot l_e$

Open Calculator 🗗

$$= \frac{\sqrt{\frac{2 - 0.94315125924}{1 - 0.94315125924}}}{2} \cdot 10$$

2) Edge Length of Snub Dodecahedron given Circumsphere Radius

 $m l_e = rac{2 \cdot
m r_c}{\sqrt{rac{2 - 0.94315125924}{1 - 0.94315125924}}}$

Open Calculator 🗗

3) Edge Length of Snub Dodecahedron given Volume

3) Edge Length of Shub Dodecanedron given volume

Open Calculator

$$ho_{
m e} = \left(rac{ ext{V} \cdot 6 \cdot \left(3 - \left(\left(rac{[
m phi]}{2} + rac{\sqrt{[
m phi]}}{2}
ight)}{ \left(\left(12 \cdot \left((3 \cdot [
m phi]) + 1
ight)
ight) \cdot \left(\left(\left(rac{[
m phi]}{2} + rac{\sqrt{[
m phi] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(rac{[
m phi]}{2} - rac{\sqrt{[
m phi] - rac{5}{27}}}{2}
ight)^{rac{1}{3}}
ight)^2
ight) -
ho_{
m e}}
ho_{
m e}
ho_{
ho}
ho_{
ho}
ho_{
ho}
ho_{
ho}_{
ho}
ho_{
ho}
ho_{
ho}
ho_{
ho$$

$$10.03386m = \left(\frac{38000 m^{3} \cdot 6 \cdot \left(3 - \left(\left(\frac{[phi]}{2} + \frac{\sqrt{[phi] - \frac{5}{27}}}{2}\right) - \left(\left(\frac{[phi]}{2} + \frac{\sqrt{[phi] - \frac{5}{27}}}{2}\right)^{\frac{1}{3}} + \left(\frac{[phi]}{2} - \frac{\sqrt{[phi] - \frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right) - \left(\left((36 \cdot [phi] - \frac{5}{27}) + \frac{1}{2}\right)^{\frac{1}{3}}\right)^{2}}{2} - \left(\left((36 \cdot [phi] - \frac{5}{27}) + \frac{1}{2}\right)^{\frac{1}{3}}\right)^{2}\right) - \left(\left((36 \cdot [phi] - \frac{5}{27}) + \frac{1}{2}\right)^{\frac{1}{3}}\right)^{2}\right) - \left(\left((36 \cdot [phi] - \frac{5}{27}) + \frac{1}{2}\right)^{\frac{1}{3}}\right)^{2}\right) - \left(\left((36 \cdot [phi] - \frac{5}{27}) + \frac{1}{2}\right)^{\frac{1}{3}}\right)^{2}$$

4) Midsphere Radius of Snub Dodecahedron

 $\left| \mathbf{r}_{
m m} = rac{\sqrt{rac{1}{1-0.94315125924}}}{2} \cdot l_{
m e}
ight|$

Open Calculator

5) Surface to Volume Ratio of Snub Dodecahedron

$$\left(\left(20\cdot\sqrt{3}\right)+\left(3\cdot\sqrt{25+\left(10\cdot\sqrt{5}\right)}\right)\right)$$

$$=rac{1}{1_{\mathrm{e}}\cdot\left(\left((12\cdot((3\cdot[\mathrm{phi}])+1))\cdot\left(\left(\left(rac{[\mathrm{phi}]}{2}+rac{\sqrt{[\mathrm{phi}]-rac{5}{27}}}{2}
ight)^{rac{1}{3}}+\left(rac{[\mathrm{phi}]}{2}-rac{\sqrt{[\mathrm{phi}]-rac{5}{27}}}{2}
ight)^{rac{1}{3}}
ight)}$$

$$\frac{\left(\left(20\cdot\sqrt{3}\right)+\left(3\cdot\sqrt{25+\left(10\cdot\sqrt{5}\right)}\right)\right)\cdot 6\cdot\left(3-\left(100\right)^{\frac{1}{2}}\right)}{1000\cdot\left(\left(12\cdot\left(\left(3\cdot\left[\text{phi}\right]\right)+1\right)\right)\cdot\left(\left(\left(\frac{\left[\text{phi}\right]}{2}+\frac{\sqrt{\left[\text{phi}\right]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}+\left(\frac{\left[\text{phi}\right]-\frac{5}{27}}{2}-\frac{\sqrt{\left[\text{phi}\right]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)-\left(1000\cdot\left(\left(12\cdot\left(\left(3\cdot\left[\text{phi}\right]\right)+1\right)\right)\cdot\left(\left(\left(\frac{\left[\text{phi}\right]}{2}+\frac{\sqrt{\left[\text{phi}\right]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}+\left(\frac{\left[\text{phi}\right]-\frac{5}{27}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)-\left(1000\cdot\left(\left(\frac{12\cdot\left(\left(3\cdot\left[\text{phi}\right]\right)+1\right)}{2}\right)\cdot\left(\left(\frac{\left(\frac{\left[\text{phi}\right]}{2}+\frac{\sqrt{\left[\text{phi}\right]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)-\left(\frac{1000\cdot\left(\left(\frac{12\cdot\left(\left(3\cdot\left[\text{phi}\right]\right)+1\right)}{2}\right)\cdot\left(\left(\frac{\left(\frac{\left[\text{phi}\right]}{2}+\frac{\sqrt{\left[\text{phi}\right]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}}{2}\right)^{\frac{1}{3}}\right)^{2}}\right)$$

Open Calculator 6

6) Surface to Volume Ratio of Snub Dodecahedron given Circumsphere Radius 🗗

$$\left(\left(20\cdot\sqrt{3}\right)+\left(3\cdot\sqrt{25+\left(10\cdot\sqrt{5}\right)}\right.\right.$$

$$V_{\rm V} =$$

 $0.144024m^{-1}$ =

$$= \frac{\frac{2 \cdot \mathrm{r_c}}{\sqrt{\frac{2 - 0.94315125924}{1 - 0.94315125924}}} \cdot \left(\left((12 \cdot ((3 \cdot [\mathrm{phi}]) + 1)) \cdot \left(\left(\left(\frac{[\mathrm{phi}]}{2} + \frac{\sqrt{[\mathrm{phi}] - \frac{5}{27}}}{2} \right)^{\frac{1}{3}} + \left(\frac{[\mathrm{phi}]}{2} - \frac{\sqrt{[\mathrm{phi}]}}{2} \right)^{\frac{1}{3}} \right) \right) \right)}{\left((12 \cdot ((3 \cdot [\mathrm{phi}]) + 1)) \cdot \left(((3 \cdot [\mathrm{phi}]) + 1) \cdot \left(((3 \cdot [\mathrm{phi}]) + 1) \cdot ((3$$

ex

$$\frac{\left(\left(20\cdot\sqrt{3}\right)+\left(3\cdot\sqrt{25+\left(10\cdot\sqrt{5}\right)}\right)\right)\cdot 6\cdot \left(3-\frac{2\cdot2m}{\sqrt{\frac{2\cdot0.94315125924}{1-0.94315125924}}}\cdot \left(\left(12\cdot\left((3\cdot[\mathrm{phi}])+1\right)\right)\cdot \left(\left(\left(\frac{[\mathrm{phi}]}{2}+\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}+\left(\frac{[\mathrm{phi}]}{2}-\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right) \right)}{}^{\frac{1}{3}}$$

7) Total Surface Area of Snub Dodecahedron 🛂

 $ag{TSA} = \left(\left(20 \cdot \sqrt{3} \right) + \left(3 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5} \right)} \right) \right) \cdot l_{
m e}^2$

Open Calculator

$$\boxed{\texttt{ex} \left[5528.674 \text{m}^2 = \left(\left(20 \cdot \sqrt{3} \right) + \left(3 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5} \right)} \right) \right) \cdot (10 \text{m})^2 \right] }$$

8) Total Surface Area of Snub Dodecahedron given Midsphere Radius 🗗

$$ag{TSA} = \left(\left(20 \cdot \sqrt{3} \right) + \left(3 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5} \right)} \right) \right) \cdot \left(\frac{2 \cdot \mathrm{r_m}}{\sqrt{\frac{1}{1 - 0.94315125924}}} \right)^2$$

Open Calculator

9) Total Surface Area of Snub Dodecahedron given Volume 🗗

Open Calculator 6

ex

$$5566.173 \text{m}^2 = \left(\left(20 \cdot \sqrt{3}\right) + \left(3 \cdot \sqrt{25 + \left(10 \cdot \sqrt{5}\right)}\right)\right) \cdot \left(\frac{\left(\left(2 \cdot \left(\left(3 \cdot \left[\text{phi}\right]\right) + 1\right)\right) \cdot \left(\left(\left(\frac{\left[\text{phi}\right]}{2} + \frac{\sqrt{\left[\text{phi}\right] - \frac{5}{27}}}{2}\right)\right)}{\left(\left(12 \cdot \left(\left(3 \cdot \left[\text{phi}\right]\right) + 1\right)\right) \cdot \left(\left(\left(\frac{\left[\text{phi}\right]}{2} + \frac{\sqrt{\left[\text{phi}\right] - \frac{5}{27}}}{2}\right)\right)}\right)\right) \cdot \left(\frac{\left(\left(\frac{\left[\text{phi}\right]}{2} + \frac{\sqrt{\left[\text{phi}\right] - \frac{5}{27}}}{2}\right)\right)}{\left(\left(12 \cdot \left(\left(3 \cdot \left[\text{phi}\right]\right) + 1\right)\right) \cdot \left(\left(\frac{\left(\frac{\left[\text{phi}\right]}{2} + \frac{\sqrt{\left[\text{phi}\right] - \frac{5}{27}}}{2}\right)}{2}\right)\right)\right)}\right)$$

10) Volume of Snub Dodecahedron

$$V = \frac{\left((12 \cdot ((3 \cdot [\mathrm{phi}]) + 1)) \cdot \left(\left(\left(\frac{[\mathrm{phi}]}{2} + \frac{\sqrt{[\mathrm{phi}] - \frac{5}{27}}}{2}\right)^{\frac{1}{3}} + \left(\frac{[\mathrm{phi}]}{2} - \frac{\sqrt{[\mathrm{phi}] - \frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^2\right) - \left(\frac{\sqrt{[\mathrm{phi}] - \frac{5}{27}}}{2}\right)^{\frac{1}{3}}}{\sqrt{[\mathrm{phi}] - \frac{5}{27}}}$$

$$6 \cdot \left(3 - \left(\left(rac{ ext{[phi]}}{2} + rac{\sqrt{ ext{[phi]} - rac{5}{27}}}{2}
ight.
ight)$$

$$37616.65 \text{m}^{3} = \frac{\left(\left(12 \cdot \left(\left(3 \cdot [\text{phi}] \right) + 1 \right) \right) \cdot \left(\left(\left(\frac{[\text{phi}]}{2} + \frac{\sqrt{[\text{phi}] - \frac{5}{27}}}{2} \right)^{\frac{1}{3}} + \left(\frac{[\text{phi}]}{2} - \frac{\sqrt{[\text{phi}] - \frac{5}{27}}}{2} \right)^{\frac{1}{3}} \right)^{2} \right) - \left(\left(\left(36 \cdot [\text{phi}] \right) + 1 \right) \cdot \left(\left(\frac{[\text{phi}]}{2} + \frac{\sqrt{[\text{phi}] - \frac{5}{27}}}{2} \right)^{\frac{1}{3}} + \left(\frac{[\text{phi}]}{2} - \frac{\sqrt{[\text{phi}] - \frac{5}{27}}}{2} \right)^{\frac{1}{3}} \right)^{2} \right) - \left(\left(\left(36 \cdot [\text{phi}] \right) + 1 \right) \cdot \left(\frac{[\text{phi}]}{2} + \frac{\sqrt{[\text{phi}] - \frac{5}{27}}}{2} \right)^{\frac{1}{3}} + \left(\frac{[\text{phi}]}{2} - \frac{\sqrt{[\text{phi}] - \frac{5}{27}}}{2} \right)^{\frac{1}{3}} \right)^{2} \right) - \left(\left(\left(36 \cdot [\text{phi}] + \frac{1}{2} + \frac{1}$$

$$7616.65 ext{m}^3 = \frac{1}{6\cdot\left(3-\left(\left(rac{ ext{[phi]}}{2}+rac{\sqrt{ ext{[phi]}-rac{5}{27}}}{2}
ight)^{rac{1}{3}}+\left(
ight)^{rac{1}{3}}
ight)^{rac{1}{3}}}$$

11) Volume of Snub Dodecahedron given Total Surface Area

 $V = \frac{\left(\left(12\cdot\left(\left(3\cdot[\mathrm{phi}]\right)+1\right)\right)\cdot\left(\left(\left(\frac{[\mathrm{phi}]}{2}+\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}+\left(\frac{[\mathrm{phi}]}{2}-\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)-\left(\frac{12\cdot\left(\left(3\cdot[\mathrm{phi}]\right)+1\right)\cdot\left(\left(\left(\frac{[\mathrm{phi}]}{2}+\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)-\left(\frac{12\cdot\left(\left(3\cdot[\mathrm{phi}]\right)+1\right)\cdot\left(\left(\frac{[\mathrm{phi}]}{2}+\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)-\left(\frac{12\cdot\left(\left(3\cdot[\mathrm{phi}]\right)+1\right)\cdot\left(\left(\frac{[\mathrm{phi}]}{2}+\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)}{2}\right)}{2}$

$$T = rac{\left(\left(12 \cdot \left(\left(3 \cdot \left[\mathrm{pm}\right]\right) + 1\right)\right) \cdot \left(\left(\left(\frac{2}{2} + \frac{2}{2}\right)\right) + \left(\frac{2}{2} - \frac{2}{2}\right)\right)\right) - \left(\left(\frac{2}{2} + \frac{2}{2}\right)\right)}{6 \cdot \left(3 - \left(\left(\frac{\left[\mathrm{phi}\right]}{2} + \frac{\sqrt{\left[\mathrm{phi}\right] - \frac{5}{27}}}{2}\right)\right)}$$

 $\left(\left(12\cdot\left(\left(3\cdot[\mathrm{phi}]\right)+1\right)\right)\cdot\left(\left(\left(\frac{[\mathrm{phi}]}{2}+\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}+\left(\frac{[\mathrm{phi}]}{2}-\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)-\left(\left(\left(36\cdot[\mathrm{phi}]\right)+1\right)\right)^{\frac{1}{3}}+\left(\frac{[\mathrm{phi}]}{2}-\frac{\sqrt{[\mathrm{phi}]-\frac{5}{27}}}{2}\right)^{\frac{1}{3}}\right)^{2}\right)$

$$37324.38 ext{m}^3 = rac{\left(\left(\left(\frac{[ext{phi}]}{2} + rac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(rac{\left(\left(\frac{[ext{phi}]}{2} + rac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(rac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(rac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2}
ight)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{\sqrt{[ext{phi}] - rac{5}{27}}}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{rac{1}{3}} + \left(\frac{1}{2} + \frac{1}{2$$

Variables Used

- Ie Edge Length of Snub Dodecahedron (Meter)
- RAN Surface to Volume Ratio of Snub Dodecahedron (1 per Meter)
- rc Circumsphere Radius of Snub Dodecahedron (Meter)
- r_m Midsphere Radius of Snub Dodecahedron (Meter)
- TSA Total Surface Area of Snub Dodecahedron (Square Meter)
- V Volume of Snub Dodecahedron (Cubic Meter)

Constants, Functions, Measurements used

- Constant: [phi], 1.61803398874989484820458683436563811
 Golden ratio
- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Volume in Cubic Meter (m³)

 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Reciprocal Length in 1 per Meter (m⁻¹)

 Reciprocal Length Unit Conversion

Check other formula lists

- Icosidodecahedron Formulas
- Rhombicosidodecahedron Formulas
- Rhombicuboctahedron Formulas
- Snub Cube Formulas
- Snub Dodecahedron Formulas
- Truncated Cube Formulas

- Truncated Cuboctahedron Formulas
- Truncated Dodecahedron Formulas
- Truncated Icosahedron Formulas
- Truncated Icosidodecahedron Formulas
- Truncated Tetrahedron Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/24/2024 | 7:03:06 AM UTC

Please leave your feedback here...

