

Turning Operation Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 17 Turning Operation Formulas

Turning Operation

4) Diameter of Turned Parts given Length-to-Diameter Ratio

$$\mathbf{k} \quad \left(\mathbf{l} = \left(\frac{1.67}{l_r} \right)^{\frac{1}{0.08}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \left(\frac{1.67}{l_r} \right)^{\frac{1}{0.08}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{f}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{f}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{f}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{f}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{f}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{f}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{f}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{K} \cdot \frac{\mathbf{h}}{\pi \cdot \mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \mathbf{k} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{K}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{K}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{K}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{K}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{K}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{K}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{L}_{cut}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{L}_{m} \cdot \mathbf{\omega}} \right)^{\frac{1}{0.08}}$$

$$\mathbf{k} \quad \left(\mathbf{l} = \pi \cdot \mathbf{d} \cdot \frac{\mathbf{L}_{cut}}{\mathbf{L}_{m} \cdot \mathbf{\omega}} \right)^{\frac{1}{0.08}}$$

8) Length of Cut using Machining Time 🕑

$$\begin{array}{ll} & \hline \mathbf{L}_w = f_r \cdot t_m \cdot \omega_w \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 62.6224min \cdot 95rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline \mathbf{C} \mbox{ 26165.63mm} = 0.7mm/rev \cdot 200rev/min \\ \hline$$

12) Non-Productive Time in Turning 🕑

$$\label{eq:open calculator} \begin{split} \text{fx} & \text{NPT} = \left(\frac{t_s + N_t \cdot t_{st}}{N_b}\right) + t_{ln} + (t_{pt} \cdot n_0) \end{split} & \text{Open Calculator } \texttt{Comparison} \\ \text{ex} & 28.16667 \text{min} = \left(\frac{20.50 \text{min} + 4 \cdot 10 \text{min}}{3}\right) + 30 \text{s} + (1.50 \text{min} \cdot 5) \end{split}$$

13) Number of Operations given Non-productive Time in Turning 🕑

$$f_{\mathbf{X}} = \frac{\operatorname{NPT} - \left(\frac{t_s + N_t \cdot t_{st}}{N_b}\right) - t_{\ln}}{t_{pt}}$$

$$e_{\mathbf{X}} = \frac{1}{5.001556} = \frac{28.169 \operatorname{min} - \left(\frac{20.50 \operatorname{min} + 4 \cdot 10 \operatorname{min}}{3}\right) - 30 \operatorname{s}}{1.50 \operatorname{min}}$$

$$f_{\mathbf{X}} = \frac{1}{N_t} = \frac{(\operatorname{NPT} - t_{\ln} - \left(\frac{20.50 \operatorname{min} + 4 \cdot 10 \operatorname{min}}{10 \operatorname{min}}\right) \cdot N_b - t_s}{t_{st}}$$

$$f_{\mathbf{X}} = \frac{(\operatorname{NPT} - t_{\ln} - \left(\frac{1}{2} \operatorname{st} + 1\right) \cdot N_b - t_s}{t_{st}}$$

$$f_{\mathbf{X}} = \frac{(\operatorname{NPT} - t_{\ln} - \left(\frac{1}{2} \operatorname{st} + 1\right) \cdot N_b - t_s}{t_{st}}$$

15) Set-up Time per Tool Terms of Non-Productive Time in Turning

$$\label{eq:linear_state} \begin{split} \textbf{K} t_{st} &= \frac{\left(NPT - t_{ln} - (t_{pt} \cdot n_0)\right) \cdot N_b - t_s}{N_t} \end{split} & \textbf{Open Calculator } \textbf{C} \\ \textbf{M} t_{st} &= \frac{\left(28.169\min - 30s - (1.50\min \cdot 5)\right) \cdot 3 - 20.50\min }{4} \end{split}$$

16) Tool Positioning Time per Operation given Non-Productive Time in Turning

$$f_{\mathbf{X}} \left[\mathbf{t}_{pt} = \frac{NPT - \left(\frac{t_s + N_t \cdot t_{st}}{N_b}\right) - t_{ln}}{n_0} \right]$$

$$e_{\mathbf{X}} \left[1.500467 \text{min} = \frac{28.169 \text{min} - \left(\frac{20.50 \text{min} + 4 \cdot 10 \text{min}}{3}\right) - 30 \text{s}}{5} \right]$$

$$f_{\mathbf{X}} \left[L_{cut} = K \cdot \frac{f}{\pi \cdot d} \right]$$

$$Open Calculator$$

ex $9.000001 \text{mm} = 2393.894 \text{mm} \cdot \frac{0.9 \text{mm}}{\pi \cdot 76.20 \text{mm}}$

Variables Used

- **d** Diameter of Workpiece (Millimeter)
- **f** Feed (Millimeter)
- **f_r** Feed Rate (Millimeter Per Revolution)
- K Constant For Machining Condition (Millimeter)
- Lcut Length of Cut (Millimeter)
- Ir Length to Diameter Ratio
- L_w Length of Cut in Machining (Millimeter)
- **n**₀ Number of Operations
- N_b Batch Size
- N_t Number of Tools Used
- NPT Non-Productive Time (Minute)
- t_{In} Loading And Unloading Time (Second)
- t_m Turning Time (Second)
- tmº Machining Time in Machining (Minute)
- t_{pt} Tool Positioning Time Per Operation (Minute)
- t_s Basic Setup Time (Minute)
- t_{st} Setup Time Per Tool (Minute)
- **W** Angular Velocity of Job or Workpiece (*Revolution per Minute*)
- ω_w Rotational Frequency of Workpiece (*Revolution per Minute*)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Time in Minute (min), Second (s) *Time Unit Conversion*
- Measurement: Angular Velocity in Revolution per Minute (rev/min)
 Angular Velocity Unit Conversion
- Measurement: Feed in Millimeter Per Revolution (mm/rev)
 Feed Unit Conversion

Check other formula lists

Milling Operation Formulas
 Turning Operation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/14/2024 | 11:11:50 AM UTC

Please leave your feedback here...

9/9

