
calculatoratoz.com

Turning Operation Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Turning Operation Formulas

Turning Operation

1) Basic Setup time given Non-productive Time in Turning
$f \mathbf{x} \mathrm{t}_{\mathrm{s}}=\left(\mathrm{NPT}-\mathrm{t}_{\ln }-\left(\mathrm{t}_{\mathrm{pt}} \cdot \mathrm{n}_{0}\right)\right) \cdot \mathrm{N}_{\mathrm{b}}-\left(\mathrm{N}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{st}}\right)$ Open Calculator ©
ex $20.507 \mathrm{~min}=(28.169 \min -30 \mathrm{~s}-(1.50 \mathrm{~min} \cdot 5)) \cdot 3-(4 \cdot 10 \mathrm{~min})$
2) Batch Size given Non-productive Time in Turning
$f \mathrm{x} \mathrm{N}_{\mathrm{b}}=\frac{\mathrm{t}_{\mathrm{s}}+\mathrm{N}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{st}}}{\left(\mathrm{NPT}-\mathrm{t}_{\ln }-\left(\mathrm{t}_{\mathrm{pt}} \cdot \mathrm{n}_{0}\right)\right)}$
ex $2.999653=\frac{20.50 \min +4 \cdot 10 \min }{(28.169 \min -30 \mathrm{~s}-(1.50 \min \cdot 5))}$
3) Constant for given Cylindrical Turning
$\mathrm{fx} \mathrm{K}=\pi \cdot \mathrm{d} \cdot \frac{\mathrm{L}_{\mathrm{cut}}}{\mathrm{f}}$
Open Calculator
ex $2393.894 \mathrm{~mm}=\pi \cdot 76.20 \mathrm{~mm} \cdot \frac{9 \mathrm{~mm}}{0.9 \mathrm{~mm}}$
4) Diameter of Turned Parts given Length-to-Diameter Ratio
$f_{x} d=\left(\frac{1.67}{l_{r}}\right)^{\frac{1}{0.68}}$
Open Calculator
$\mathrm{ex} 76.36711 \mathrm{~mm}=\left(\frac{1.67}{0.79}\right)^{\frac{1}{0.68}}$
5) Diameter of Workpiece given Constant for Cylindrical Turning
$f \mathrm{fx}=\mathrm{K} \cdot \frac{\mathrm{f}}{\pi \cdot \mathrm{L}_{\text {cut }}}$
Open Calculator
ex $76.20001 \mathrm{~mm}=2393.894 \mathrm{~mm} \cdot \frac{0.9 \mathrm{~mm}}{\pi \cdot 9 \mathrm{~mm}}$
6) Feed given Constant for Cylindrical Turning
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{f}}=\pi \cdot \mathrm{d} \cdot \frac{\mathrm{L}_{\text {cut }}}{\mathrm{K}}$
Open Calculator
ex $0.9 \mathrm{~mm}=\pi \cdot 76.20 \mathrm{~mm} \cdot \frac{9 \mathrm{~mm}}{2393.894 \mathrm{~mm}}$
7) Feed Rate for Turning Operation given Machining Time
$f x f_{r}=\frac{L_{\text {cut }}}{t_{m} \cdot \omega}$
Open Calculator
ex $0.716197 \mathrm{~mm} / \mathrm{rev}=\frac{9 \mathrm{~mm}}{0.6 \mathrm{~s} \cdot 200 \mathrm{rev} / \mathrm{min}}$
8) Length of Cut using Machining Time
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}_{\mathrm{w}}=\mathrm{f}_{\mathrm{r}} \cdot \mathrm{t}_{\mathrm{m}} \cdot \cdot \omega_{\mathrm{w}}$
Open Calculator
ex $26165.63 \mathrm{~mm}=0.7 \mathrm{~mm} / \mathrm{rev} \cdot 62.6224 \mathrm{~min} \cdot 95 \mathrm{rev} / \mathrm{min}$
9) Length-to-diameter Ratio given diameter of turned parts
f. $\mathrm{l}_{\mathrm{r}}=\frac{1.67}{\mathrm{~d}^{0.68}}$

Open Calculator
ex $0.791178=\frac{1.67}{(76.20 \mathrm{~mm})^{0.68}}$
10) Loading and Unloading Time given Non-productive Time in Turning
$f \times \mathrm{t}_{\mathrm{ln}}=\mathrm{NPT}-\left(\frac{\mathrm{t}_{\mathrm{s}}+\mathrm{N}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{st}}}{\mathrm{N}_{\mathrm{b}}}\right)-\left(\mathrm{t}_{\mathrm{pt}} \cdot \mathrm{n}_{0}\right)$
Open Calculator
ex $30.14 \mathrm{~s}=28.169 \mathrm{~min}-\left(\frac{20.50 \mathrm{~min}+4 \cdot 10 \mathrm{~min}}{3}\right)-(1.50 \mathrm{~min} \cdot 5)$
11) Machining Time for Turning Operation
$f \mathrm{fx} \mathrm{t}_{\mathrm{m}}=\frac{L_{\mathrm{cut}}}{\mathrm{f}_{\mathrm{r}} \cdot \omega}$
ex $0.613883 \mathrm{~s}=\frac{9 \mathrm{~mm}}{0.7 \mathrm{~mm} / \mathrm{rev} \cdot 200 \mathrm{rev} / \mathrm{min}}$
12) Non-Productive Time in Turning
$f \mathrm{xP}=\left(\frac{\mathrm{t}_{\mathrm{s}}+\mathrm{N}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{st}}}{\mathrm{N}_{\mathrm{b}}}\right)+\mathrm{t}_{\mathrm{ln}}+\left(\mathrm{t}_{\mathrm{pt}} \cdot \mathrm{n}_{0}\right)$
Open Calculator
$\mathbf{e x} 28.16667 \mathrm{~min}=\left(\frac{20.50 \mathrm{~min}+4 \cdot 10 \mathrm{~min}}{3}\right)+30 \mathrm{~s}+(1.50 \mathrm{~min} \cdot 5)$
13) Number of Operations given Non-productive Time in Turning
$f \mathrm{x} \mathrm{n}_{0}=\frac{\mathrm{NPT}-\left(\frac{\mathrm{t}_{\mathrm{s}}+\mathrm{N}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{st}}}{\mathrm{N}_{\mathrm{b}}}\right)-\mathrm{t}_{\mathrm{ln}}}{\mathrm{t}_{\mathrm{pt}}}$
Open Calculator
ex $5.001556=\frac{28.169 \mathrm{~min}-\left(\frac{20.50 \mathrm{~min}+4 \cdot 10 \mathrm{~min}}{3}\right)-30 \mathrm{~s}}{1.50 \mathrm{~min}}$
14) Number of Tools given Non-Productive Time in Turning
$f_{\mathrm{x}} \mathrm{N}_{\mathrm{t}}=\frac{\left(\mathrm{NPT}-\mathrm{t}_{\ln }-\left(\mathrm{t}_{\mathrm{pt}} \cdot \mathrm{n}_{0}\right)\right) \cdot \mathrm{N}_{\mathrm{b}}-\mathrm{t}_{\mathrm{s}}}{\mathrm{t}_{\mathrm{st}}}$
Open Calculator
ex $4.0007=\frac{(28.169 \mathrm{~min}-30 \mathrm{~s}-(1.50 \mathrm{~min} \cdot 5)) \cdot 3-20.50 \mathrm{~min}}{10 \mathrm{~min}}$
15) Set-up Time per Tool Terms of Non-Productive Time in Turning
$f_{\mathrm{x}}^{\mathrm{x}} \mathrm{t}_{\mathrm{st}}=\frac{\left(\mathrm{NPT}-\mathrm{t}_{\ln }-\left(\mathrm{t}_{\mathrm{pt}} \cdot \mathrm{n}_{0}\right)\right) \cdot \mathrm{N}_{\mathrm{b}}-\mathrm{t}_{\mathrm{s}}}{\mathrm{N}_{\mathrm{t}}}$
Open Calculator
ex $10.00175 \mathrm{~min}=\frac{(28.169 \mathrm{~min}-30 \mathrm{~s}-(1.50 \mathrm{~min} \cdot 5)) \cdot 3-20.50 \mathrm{~min}}{4}$
16) Tool Positioning Time per Operation given Non-Productive Time in Turning

Open Calculator
$1.500467 \mathrm{~min}=\frac{28.169 \mathrm{~min}-\left(\frac{20.50 \mathrm{~min}+4 \cdot 10 \mathrm{~min}}{3}\right)-30 \mathrm{~s}}{5}$
17) Turning Length given Constant for Cylindrical Turning
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}_{\mathrm{cut}}=\mathrm{K} \cdot \frac{\mathrm{f}}{\pi \cdot \mathrm{d}}$
ex $9.000001 \mathrm{~mm}=2393.894 \mathrm{~mm} \cdot \frac{0.9 \mathrm{~mm}}{\pi \cdot 76.20 \mathrm{~mm}}$

Variables Used

- d Diameter of Workpiece (Millimeter)
- f Feed (Millimeter)
- $\mathbf{f}_{\mathbf{r}}$ Feed Rate (Millimeter Per Revolution)
- K Constant For Machining Condition (Millimeter)
- $L_{\text {cut }}$ Length of Cut (Millimeter)
- Ir Length to Diameter Ratio
- $\mathrm{L}_{\mathbf{w}}$ Length of Cut in Machining (Millimeter)
- $\mathbf{n}_{\mathbf{0}}$ Number of Operations
- $\mathbf{N}_{\mathbf{b}}$ Batch Size
- $\mathbf{N}_{\mathbf{t}}$ Number of Tools Used
- NPT Non-Productive Time (Minute)
- \mathbf{t}_{In} Loading And Unloading Time (Second)
- $\mathbf{t}_{\mathbf{m}}$ Turning Time (Second)
- $\mathbf{t}_{\mathbf{m}}{ }^{\circ}$ Machining Time in Machining (Minute)
- $\mathbf{t}_{\mathbf{p t}}$ Tool Positioning Time Per Operation (Minute)
- $\mathbf{t}_{\mathbf{s}}$ Basic Setup Time (Minute)
- $\mathbf{t}_{\text {st }}$ Setup Time Per Tool (Minute)
- $\boldsymbol{\omega}$ Angular Velocity of Job or Workpiece (Revolution per Minute)
- $\boldsymbol{\omega}_{\mathbf{w}}$ Rotational Frequency of Workpiece (Revolution per Minute)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Time in Minute (min), Second (s)

Time Unit Conversion

- Measurement: Angular Velocity in Revolution per Minute (rev/min)

Angular Velocity Unit Conversion

- Measurement: Feed in Millimeter Per Revolution (mm/rev)

Feed Unit Conversion

Check other formula lists

- Milling Operation Formulas •Turning Operation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

