

Cutting Force and Surface Roughness Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 21 Cutting Force and Surface Roughness Formulas

Cutting Force and Surface Roughness C

4) Cutting Force given Specific Cutting Energy in Machining 🗹

$$25\mathrm{N} = 1250\mathrm{mm^2} \cdot ((0.5 \cdot 0.03\mathrm{N/mm^2}) + ((1 - 0.5) \cdot 0.01\mathrm{N/mm^2}))$$

11) Proportion of Area in which Metallic Contact occurs given Frictional Force

$$f_{X} \gamma_{m} = \frac{\left(\frac{F_{f}}{A_{c}}\right) - \tau_{2}}{\tau_{1} - \tau_{2}}$$

$$e_{X} 0.5 = \frac{\left(\frac{25N}{1250mm^{2}}\right) - 0.01N/mm^{2}}{0.03N/mm^{2} - 0.01N/mm^{2}}$$

Open Calculator

12) Resultant Cutting Force using Force required to remove Chip 子

$$\begin{array}{ll} \fboxinterfactors \label{eq:rescaled_rescal$$

19) Shear Strength of Softer Metal given Frictional force 🕑

$$f_{\mathbf{X}} \boxed{\tau_1 = \frac{\left(\frac{F_f}{A_c}\right) - (1 - \gamma_m) \cdot \tau_2}{\gamma_m}}$$

$$e_{\mathbf{X}} \boxed{0.03N/mm^2 = \frac{\left(\frac{25N}{1250mm^2}\right) - (1 - 0.5) \cdot 0.01N/mm^2}{0.5}}$$

20) Working Major Cutting Edge Angle given Roughness Value 🕑

$$f_{\mathbf{X}} \theta = \left(a \cot\left(\left(\frac{f}{4 \cdot R}\right) - \cot(\theta')\right) \right)$$

$$e_{\mathbf{X}} 45.17097^{\circ} = \left(a \cot\left(\left(\frac{0.9 \text{mm}}{4 \cdot 0.017067 \text{mm}}\right) - \cot(4.69^{\circ})\right) \right)$$

$$e_{\mathbf{X}} 45.17097^{\circ} = \left(a \cot\left(\left(\frac{f}{4 \cdot R}\right) - \cot(\theta)\right) \right)$$

$$e_{\mathbf{X}} \theta' = \left(a \cot\left(\left(\frac{f}{4 \cdot R}\right) - \cot(\theta)\right) \right)$$

$$e_{\mathbf{X}} \theta' = \left(a \cot\left(\left(\frac{1}{4 \cdot R}\right) - \cot(\theta)\right) \right)$$

$$e_{\mathbf{X}} 4.69^{\circ} = \left(a \cot\left(\left(\frac{0.9 \text{mm}}{4 \cdot 0.017067 \text{mm}}\right) - \cot(45.17097^{\circ})\right) \right)$$

Variables Used

- **A_c** Real Area of Contact (Square Millimeter)
- A_{cs} Cross Sectional Area of Uncut Chip (Square Millimeter)
- **d**_t Diameter of Cutter (*Millimeter*)
- **f** Feed (Millimeter)
- **F**_c Cutting Force (Newton)
- **F**_f Force of Friction (Newton)
- **F**_p Plowing Force (Newton)
- Fr Force required to Remove Chip (Newton)
- **F**_{rc} Resultant Cutting Force (Newton)
- Q_c Rate of Energy Consumption during Machining (Watt)
- **Q_{sc}** Specific Cutting Energy in Machining (Megajoule per Cubic Meter)
- **R** Roughness Value (*Millimeter*)
- rc Corner Radius of Tool (Millimeter)
- V_c Cutting Speed (Millimeter per Second)
- V_f Feed Speed (Millimeter per Second)
- γ_m Proportion of Area of Metallic Contact
- **θ** Working Major Cutting Edge Angle (*Degree*)
- **θ'** Working Minor Cutting Edge (*Degree*)
- T1 Shear Strength of Softer Metal (Newton per Square Millimeter)
- T₂ Shear Strength of Softer Lubricant Layer (Newton per Square Millimeter)
- ω_c Rotational Frequency of Cutter (Hertz)

8/11

Constants, Functions, Measurements used

- Function: acot, acot(Number) The ACOT function calculates the arccotangent of a given number which is an angle given in radians from 0 (zero) to pi.
- Function: cot, cot(Angle) Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion
- Measurement: Speed in Millimeter per Second (mm/s) Speed Unit Conversion
- Measurement: Power in Watt (W) Power Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Energy Density in Megajoule per Cubic Meter (MJ/m³) Energy Density Unit Conversion

• Measurement: Stress in Newton per Square Millimeter (N/mm²) Stress Unit Conversion

11/11

Check other formula lists

Cutting Force and Surface
 Roughness Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/17/2024 | 9:34:51 AM UTC

Please leave your feedback here ...

