

Design of Belt Drives Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 106 Design of Belt Drives Formulas

ex 14.49806mm = $\left(8 \cdot \frac{17350 \text{mm}^4}{\pi}\right)^{\frac{1}{4}}$

5) Bending Stress in Arm of Belt Driven Pulley given Torque Transmitted by Pulley 🗹

$$\begin{aligned} \mathbf{fx} \\ \mathbf{\sigma}_{b} &= 16 \cdot \frac{M_{t}}{\pi \cdot N_{pu} \cdot a^{3}} \end{aligned}$$

$$\begin{aligned} \mathbf{ex} \\ 37.46444 N/mm^{2} &= 16 \cdot \frac{75000 N^{*}mm}{\pi \cdot 4 \cdot (13.66mm)^{3}} \end{aligned}$$

6) Major Axis of Elliptical Cross-Section of Pulley's Arm given Moment of Inertia of Arm 🕑

Open Calculator

ርጉ

10) Minor Axis of Elliptical Cross-Section of Pulley's Arm given Torque and Bending Stress 🖸

$$\begin{bmatrix} \mathbf{a} = \left(16 \cdot \frac{\mathbf{M}_{t}}{\pi \cdot \mathbf{N}_{pu} \cdot \sigma_{b}}\right)^{\frac{1}{3}} \\ \text{Open Calculator (f)} \\ \text{S} \\ \mathbf{a} = \left(16 \cdot \frac{\mathbf{M}_{t}}{\pi \cdot \mathbf{N}_{pu} \cdot \sigma_{b}}\right)^{\frac{1}{3}} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a} \cdot \mathbf{b}_{a}^{3}}{64} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a} \cdot \mathbf{b}_{a}^{3}}{64} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a} \cdot \mathbf{b}_{a}^{3}}{64} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a} \cdot \mathbf{b}_{a}^{3}}{64} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a} \cdot \mathbf{b}_{a}^{3}}{64} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a} \cdot \mathbf{b}_{a}^{3}}{\sigma_{b}} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a}}{\sigma_{b}} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a}}{s} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a}}{4} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a}^{4}}{8} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a}^{4}}{8} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \text{I} \\ \frac{\pi \cdot \mathbf{a}}{4} \\ \text{I} \\ \text$$

15) Number of Arms of Pulley given Bending Stress in Arm 🕑

$$\begin{bmatrix} \mathbf{N}_{pu} = 16 \cdot \frac{\mathbf{M}_t}{\pi \cdot \mathbf{c}_b \cdot \mathbf{a}^3} \end{bmatrix}$$
 (denotation of the second state of the second sta

20) Tangential Force at End of Each Arm of Pulley given Torque Transmitted by Pulley 🕑

Crossed Belt Drives 🗹

24) Belt Length for Cross Belt Drive 🕝

$$\mathbf{fx} \left[\mathbf{L} = 2 \cdot \mathbf{C} + \left(\pi \cdot \frac{\mathbf{d} + \mathbf{D}}{2} \right) + \left(\frac{\left(\mathbf{D} - \mathbf{d} \right)^2}{4 \cdot \mathbf{C}} \right)
ight]$$

ex 4942.023mm = $2 \cdot 1600$ mm + $\left(\pi \cdot \frac{270$ mm + 810mm}{2}\right) + $\left(\frac{(810$ mm - 270mm)²}{4 \cdot 1600mm}\right)

25) Center Distance given Wrap Angle for Small Pulley of Cross Belt Drive

fx
$$C = rac{D+d}{2\cdot \sin\left(rac{lpha_{
m a}-3.14}{2}
ight)}$$

$$1575.408 \text{mm} = \frac{810 \text{mm} + 270 \text{mm}}{2 \cdot \sin\left(\frac{220^{\circ} - 3.14}{2}\right)}$$

26) Diameter of Big Pulley given Wrap Angle for Small Pulley of Cross Belt Drive 🕑

$$fx D = \left(2 \cdot \sin\left(\frac{\alpha_{a} - 3.14}{2}\right) \cdot C\right) - d$$

$$ex 826.8587mm = \left(2 \cdot \sin\left(\frac{220^{\circ} - 3.14}{2}\right) \cdot 1600mm\right) - 270mm$$
Open Calculator (3)

27) Diameter of Small Pulley given Wrap Angle for Small Pulley of Cross Belt Drive 🚰

$$fx d = \left(2 \cdot C \cdot \sin\left(\frac{\alpha_{a} - 3.14}{2}\right)\right) - D$$

$$ex 286.8587mm = \left(2 \cdot 1600mm \cdot \sin\left(\frac{220^{\circ} - 3.14}{2}\right)\right) - 810mm$$

Open Calculator 🕑

Open Calculator

28) Wrap Angle for Small Pulley of Cross Belt Drive

$$\mathbf{x}$$
 $\left[\mathbf{\alpha}_{\mathrm{a}} = 3.14 + \left(2 \cdot a \sin\left(\frac{\mathrm{D} + \mathrm{d}}{2 \cdot \mathrm{C}} \right) \right) \right]$

ex
$$219.358^{\circ} = 3.14 + \left(2 \cdot a \sin\left(\frac{810 \text{mm} + 270 \text{mm}}{2 \cdot 1600 \text{mm}}\right)\right)$$

Introduction of Belt Drives 🕑

29) Angle of Wrap given Belt Tension in Tight Side 🕑

$$\mathbf{fx} \alpha = \frac{\ln \left(\frac{P_1 - m \cdot v_b^2}{P_2 - (m \cdot v_b^2)}\right)}{\mu}$$

i

$$\underbrace{160.3553^{\circ} = \frac{\ln\left(\frac{800N - 0.6 \text{kg/m} \cdot (25.81 \text{m/s})^2}{550N - \left(0.6 \text{kg/m} \cdot (25.81 \text{m/s})^2\right)}\right)}{0.35}$$

30) Belt Tension in Loose Side of Belt given Tension in Tight Side 🕑

$$\mathbf{x} \mathbf{P}_2 = \left(rac{\mathbf{P}_1 - \left(\mathbf{m} \cdot \mathbf{v}_b^2
ight)}{e^{\mu \cdot lpha}}
ight) + \left(\mathbf{m} \cdot \mathbf{v}_b^2
ight)$$

$$\overbrace{550.1426\text{N} = \left(\frac{800\text{N} - \left(0.6\text{kg/m} \cdot (25.81\text{m/s})^2\right)}{e^{0.35 \cdot 160.2^{\circ}}}\right) + \left(0.6\text{kg/m} \cdot (25.81\text{m/s})^2\right)}$$

31) Belt tension in tight side 🕑

$$\mathbf{k} \left[\mathrm{P}_1 = \left(\left(e^{\mu \cdot lpha}
ight) \cdot \left(\mathrm{P}_2 - \left(\mathrm{m} \cdot \mathrm{v}_\mathrm{b}^2
ight)
ight) + \left(\mathrm{m} \cdot \mathrm{v}_\mathrm{b}^2
ight)
ight)
ight]$$

$$imes 299.6205 \mathrm{N} = \left(\left(e^{0.35\cdot 160.2^{\circ}}
ight) \cdot \left(550 \mathrm{N} - \left(0.6 \mathrm{kg/m} \cdot (25.81 \mathrm{m/s})^2
ight)
ight)
ight) + \left(0.6 \mathrm{kg/m} \cdot (25.81 \mathrm{m/s})^2
ight)
ight)$$

Open Calculator 🗗

Open Calculator 🕑

Open Calculator 🖸

32) Center Distance from Small Pulley to Big Pulley given Wrap Angle of Big Pulley 🕑

37) Diameter of Small Pulley given Wrap Angle of Big Pulley 🕑

$$\mathbf{K} = \mathbf{D} - \left(2 \cdot \mathbf{C} \cdot \sin\left(\frac{a_{\rm b} - 3.14}{2}\right)\right)$$
(Open Calculator C
251.8165mm = 810mm - $\left(2 \cdot 1600$ mm $\cdot \sin\left(\frac{200^{\circ} - 3.14}{2}\right)\right)$
(38) Diameter of Small Pulley given Wrap Angle of Small Pulley C
($\mathbf{M} = \mathbf{D} - \left(2 \cdot \mathbf{C} \cdot \sin\left(\frac{3.14 - a_{\rm s}}{2}\right)\right)$
(Open Calculator C
($\mathbf{M} = \mathbf{D} - \left(2 \cdot \mathbf{C} \cdot \sin\left(\frac{3.14 - a_{\rm s}}{2}\right)\right)$
(Open Calculator C
($\mathbf{M} = \frac{1}{2} - \left(2 \cdot \mathbf{C}\right) + \left(\pi \cdot \frac{\mathbf{D} + \mathbf{d}}{2}\right) + \left(\frac{(\mathbf{D} - \mathbf{d})^2}{4 \cdot \mathbf{C}}\right)$
(Open Calculator C
($\mathbf{M} = \frac{\mathbf{P}_1 - \left((e^{\mu a}) \cdot \mathbf{P}_2\right)}{\left(\mathbf{v}_{\rm b}^2\right) \cdot \left(1 - (e^{\mu a})\right)}$
($\mathbf{M} = \frac{800N - \left((e^{0.35 \cdot 160.2^{\circ}}) \cdot 550N\right)}{\left((25.81 \text{m/s})^2\right) \cdot \left(1 - (e^{0.35 \cdot 160.2^{\circ}})\right)}$

10/29

41) Velocity of belt given tension of belt in tight side 🗹

$$\mathbf{v}_{b} = \sqrt{\frac{\left(\left(e^{\mu \cdot a}\right) \cdot \mathbf{P}_{2}\right) - \mathbf{P}_{1}}{\mathbf{m} \cdot \left(\left(e^{\mu \cdot a}\right) - 1\right)} }$$

$$\mathbf{v}_{b} = \sqrt{\frac{\left(\left(e^{0.35 \cdot 160.2^{\circ}}\right) \cdot 550\mathrm{N}\right) - 800\mathrm{N}}{0.6\mathrm{kg/m} \cdot \left(\left(e^{0.35 \cdot 160.2^{\circ}}\right) - 1\right)} }$$

$$\mathbf{z} = 25.80262\mathrm{m/s} = \sqrt{\frac{\left(\left(e^{0.35 \cdot 160.2^{\circ}}\right) \cdot 550\mathrm{N}\right) - 800\mathrm{N}}{0.6\mathrm{kg/m} \cdot \left(\left(e^{0.35 \cdot 160.2^{\circ}}\right) - 1\right)} }$$

$$\mathbf{z} = 3.14 + \left(2 \cdot \left(a \sin\left(\frac{\mathrm{D} - \mathrm{d}}{2 \cdot \mathrm{C}}\right)\right)\right)$$

$$\mathbf{z} = 3.14 + \left(2 \cdot \left(a \sin\left(\frac{810\mathrm{mm} - 270\mathrm{mm}}{2 \cdot 1600\mathrm{mm}}\right)\right)\right)$$

$$\mathbf{z} = 3.14 - \left(2 \cdot \left(a \sin\left(\frac{\mathrm{D} - \mathrm{d}}{2 \cdot \mathrm{C}}\right)\right)\right)$$

$$\mathbf{z} = 160.4784^{\circ} = 3.14 - \left(2 \cdot \left(a \sin\left(\frac{\mathrm{B10\mathrm{mm}} - 270\mathrm{mm}}{2 \cdot 1600\mathrm{mm}}\right)\right)\right)$$

$$\mathbf{z} = 160.4784^{\circ} = 3.14 - \left(2 \cdot \left(a \sin\left(\frac{\mathrm{B10\mathrm{mm}} - 270\mathrm{mm}}{2 \cdot 1600\mathrm{mm}}\right)\right)\right) \right)$$

$$\mathbf{z} = 160.4784^{\circ} = 3.14 - \left(2 \cdot \left(a \sin\left(\frac{\mathrm{B10\mathrm{mm}} - 270\mathrm{mm}}{2 \cdot 1600\mathrm{mm}}\right)\right)\right)$$

$$P_{t} = \frac{P_{d}}{F_{a}}$$

$$ex \quad 6.443478kW = \frac{7.41kW}{1.15}$$

$$45) \text{ Belt Tension in Loose Side of Belt given Initial Tension in Belt }$$

$$fx \quad P_{2} = 2 \cdot P_{i} - P_{1}$$

$$ex \quad 550N = 2 \cdot 675N - 800N$$

52) Mass of One Meter Length of Belt given Maximum Permissible Tensile Stress of Belt 🗹

fx
$$\mathbf{m} = \frac{\mathbf{P}_{\text{max}}}{\mathbf{3} \cdot \mathbf{v}_{o}^{2}}$$
ex
$$1.067209 \text{kg/m} = \frac{1200 \text{N}}{\mathbf{3} \cdot (19.36 \text{m/s})^{2}}$$

53) Mass of One Meter Length of Belt given Tension in Belt Due to Centrifugal Force 🕑

fx
$$m = \frac{T_b}{v_b^2}$$
 ex $0.60046 {\rm kg/m} = \frac{400 {\rm N}}{(25.81 {\rm m/s})^2}$

.....

54) Mass of One Meter Length of Belt given Velocity for Maximum Power Transmission 🗲

$\mathbf{x}\mathbf{m}=rac{\mathrm{P_{i}}}{3}\cdot\mathrm{v_{o}^{2}}$	Open Calculator 🕑
ex 84332.16kg/m = $\frac{675\text{N}}{3} \cdot (19.36\text{m/s})^2$	
55) Maximum Belt Tension 🚰	
fx $P_{max} = \sigma \cdot b \cdot t$	Open Calculator 🕑
ex $793.8\mathrm{N} = 1.26\mathrm{N/mm^2} \cdot 126\mathrm{mm} \cdot 5\mathrm{mm}$	
56) Maximum Belt Tension given Tension Due to Centrifugal Force 🕑	
fx $\mathrm{P_{max}}=3\cdot\mathrm{T_{b}}$	Open Calculator 🛃
$\texttt{ex} \ 1200 \texttt{N} = 3 \cdot 400 \texttt{N}$	
57) Maximum Permissible Tensile Stress of Belt Material 🚰	
$\sigma = \frac{P_{max}}{b \cdot t}$	Open Calculator C
$\boxed{1.904762 \text{N}/\text{mm}^2 = \frac{1200 \text{N}}{126 \text{mm} \cdot 5 \text{mm}}}$	
© calculatoratoz.com. A softusvista inc. venture!	

Open Calculator 🕑

Open Calculator 🕑

58) Optimum Velocity of Belt for Maximum Power Transmission 🖸

63) Velocity of Belt for Maximum Power Transmission given Maximum Permissible tensile Stress 🛃

$$\begin{array}{c} \hline \mathbf{P} & \mathbf{v}_{o} = \sqrt{\frac{P_{max}}{3}} \cdot \mathbf{m} \\ \hline \mathbf{P} & \mathbf{v}_{o} = \sqrt{\frac{P_{max}}{3}} \cdot \mathbf{m} \\ \hline \mathbf{P} & \mathbf{15.49193m/s} = \sqrt{\frac{1200N}{3}} \cdot 0.6 \mathrm{kg/m} \\ \hline \mathbf{S} & \mathbf{15.49193m/s} = \sqrt{\frac{1200N}{3}} \cdot 0.6 \mathrm{kg/m} \\ \hline \mathbf{S} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{max} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{M} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{P} & \mathbf{M} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{M} & \mathbf{D} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{M} & \mathbf{D} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{D} & \mathbf{D} \\ \hline \mathbf{S} & \mathbf{D} & \mathbf{D} & \mathbf{D} \\ \hline \mathbf{S} & \mathbf{S} & \mathbf{D} & \mathbf{D} \\ \hline \mathbf{S} & \mathbf{S} & \mathbf{D} & \mathbf{M} \\ \hline \mathbf{S} & \mathbf{S} \\ \hline \mathbf{S} \\ \hline \mathbf{S} & \mathbf{S} \\ \hline \mathbf{S} \\ \hline \mathbf{S} & \mathbf{S} \\ \hline \mathbf{S} \\ \mathbf{S} \\ \mathbf{S} \\ \hline \mathbf{S} \\ \hline$$

68) Number of Teeth in larger pulley given Transmission ratio of Synchronous belt drive 🕑

fx
$$T_2 = T_1 \cdot i$$
 Open Calculator $\ensuremath{\mathbb{C}}$ ex $60 = 20 \cdot 3$

69) Number of Teeth in Smaller pulley given Transmission ratio of Synchronous belt drive 🕑

70) Pitch Diameter of Larger Pulley given Transmission Ratio of Synchronous Belt Drive

71) Pitch Diameter of Smaller Pulley given Transmission Ratio of Synchronous Belt Drive

72) Pitch given Datum Length of Synchronous Belt 🖸

73) Power transmitted by synchronous belt 🕑

16/29

74) Pulley outside Diameter given Distance between Belt Pitch line and Pulley tip circle radius radiusfx $d_o = d^{'} - (2 \cdot a_p)$ Open Calculator radius

$$\begin{array}{c} \texttt{ex} \ 154\text{mm} = 170\text{mm} - (2 \cdot 8\text{mm}) \end{array}$$

75) Pulley Pitch Diameter given Distance between Belt pitch line and Pulley tip circle radius 🕑

$$\mathbf{\vec{k}} \; \mathbf{d}^{'} = (2 \cdot \mathbf{a}_{\mathrm{p}}) + \mathbf{d}_{\mathrm{o}}$$
 Open Calculator $\mathbf{\vec{C}}$

ex $170mm = (2 \cdot 8mm) + 154mm$

76) Service Correction Factor given Power transmitted by Synchronous Belt 🕑

77) Speed of larger pulley given Transmission ratio of Synchronous belt drive G

$$\texttt{ex} \; 8.385 \text{kW} = 6.45 \text{kW} \cdot 1.3$$

80) Transmission Ratio of Synchronous belt drive given no. of teeth in smaller and larger pulley 🕑

81) Transmission Ratio of Synchronous Belt drive given Pitch Diameter of Smaller and Larger Pulley ሰ

82) Transmission Ratio of Synchronous belt drive given Speed of smaller and larger pulley 🕑

ex
$$0.333333 = \frac{040107/\text{min}}{1920\text{rev/min}}$$

V Belt Drives

$$\text{ex} \ 550.0969 \text{N} = 800 \text{N} - \frac{6.45 \text{kW}}{25.81 \text{m/s}}$$

Open Calculator

Open Calculator

Open Calculator

84) Belt Tension in Tight Side of Belt given Power Transmitted using V-Belt 🕑

Design of Belt Drives Formulas... 20/29 Selection of V Belts 89) Correction Factor for Industrial Service given Design Power 🕑 Open Calculator $\left| \left(\mathrm{F}_{\mathrm{a}} \mathrm{r} \right) = rac{\mathrm{P}_{\mathrm{d}}}{\mathrm{P}_{\star}} \right|$ ex $1.148837 = \frac{7.41 \text{kW}}{6.45 \text{kW}}$ 90) Design Power for V Belt Open Calculator fx $\mathbf{P}_{\mathrm{d}} = (\mathbf{F}_{\mathrm{a}}\mathbf{r})\cdot\mathbf{P}_{\mathrm{t}}$ **ex** $8.385 \text{kW} = 1.30 \cdot 6.45 \text{kW}$ 91) Pitch diameter of big pulley of V Belt drive Open Calculator $\mathbf{f} \mathbf{X} \mathbf{D} = \mathbf{d} \cdot \left(\frac{\mathbf{n}_1}{\mathbf{n}_2} \right)$ ex $90 \text{mm} = 270 \text{mm} \cdot \left(\frac{640 \text{rev/min}}{1920 \text{rev/min}} \right)$ 92) Pitch diameter of smaller pulley given pitch diameter of big pulley Open Calculator $\mathbf{f} \mathbf{x} d = \mathbf{D} \cdot \left(\frac{\mathbf{n}_2}{\mathbf{n}_1} \right)$ ex 2430mm = 810mm $\cdot \left(\frac{1920$ rev/min}{640rev/min}\right) 93) Speed of bigger pulley given speed of smaller pullev 🖒 Open Calculator fx $\mathbf{n}_2 = \mathbf{d} \cdot \left(\frac{\mathbf{n}_1}{\mathbf{D}} \right)$ ex 213.3333rev/min = 270mm $\cdot \left(\frac{640$ rev/min}{810mm}\right)

94) Speed of smaller pulley given pitch diameter of both pulleys 🖸

$$\mathbf{\hat{k}} \quad \mathbf{\hat{n}_{1} = \mathbf{D} \cdot \frac{\mathbf{\hat{n}_{2}}}{\mathbf{d}}}$$

$$\mathbf{\hat{p}_{2} = \frac{\mathbf{\hat{p}_{1}}}{\mathbf{f_{a}r}}$$

$$\mathbf{\hat{p}_{3} = \sin\left(\frac{\theta}{2}\right) \cdot \frac{\ln\left(\frac{\mathbf{p}_{1}-\mathbf{m}_{v}\cdot\mathbf{v}_{b}^{2}}{\mathbf{p}_{2}-\mathbf{m}_{v}\cdot\mathbf{v}_{b}^{2}}\right)}{\mu}$$

$$\mathbf{\hat{p}_{4} = \frac{\mathbf{p}_{d}}{\mathbf{f_{a}r}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30}}$$

$$\mathbf{\hat{p}_{5} = \frac{7.41 \text{ kW}}{1.30$$

98) Belt Tension in Tight Side of V-Belt 🕑

fx
$$\mathbf{P}_1 = \left(e^{\mu} \cdot rac{lpha}{\sin\left(rac{ heta}{2}
ight)}
ight) \cdot \left(\mathbf{P}_2 - \mathbf{m}_{\mathrm{v}} \cdot \mathbf{v}_{\mathrm{b}}^2
ight) + \mathbf{m}_{\mathrm{v}} \cdot \mathbf{v}_{\mathrm{b}}^2$$

$$843.0982 \mathrm{N} = \left(e^{0.35} \cdot \frac{160.2^{\circ}}{\sin\left(\frac{62^{\circ}}{2}\right)}\right) \cdot \left(550 \mathrm{N} - 0.76 \mathrm{kg/m} \cdot \left(25.81 \mathrm{m/s}\right)^2\right) + 0.76 \mathrm{kg/m} \cdot \left(25.81 \mathrm{m/s}\right)^2$$

99) Belt Velocity of V-Belt given Belt Tension in Loose Side 🕑

$$\mathbf{k} \mathbf{v}_{b} = \sqrt{\frac{\mathbf{P}_{1} - \left(e^{\mu \cdot \frac{\alpha}{\sin\left(\frac{\theta}{2}\right)}}\right) \cdot \mathbf{P}_{2}}{\mathbf{m}_{v} \cdot \left(1 - \left(e^{\mu \cdot \frac{\alpha}{\sin\left(\frac{\theta}{2}\right)}}\right)\right)}}$$

$$\mathbf{ex} 25.80379 \text{m/s} = \sqrt{\frac{800 \text{N} - \left(e^{0.35 \cdot \frac{160.2^{\circ}}{\sin\left(\frac{\theta}{2}\right)}}\right) \cdot 550 \text{N}}{0.76 \text{kg/m} \cdot \left(1 - \left(e^{0.35 \cdot \frac{160.2^{\circ}}{\sin\left(\frac{\theta}{2}\right)}}\right)\right)}}$$

100) Coefficient of Friction in V-Belt given Belt Tension in Loose Side of Belt 🕑

$$\mathbf{fx} \left[\mu = \sin\!\left(rac{ heta}{2}
ight) \cdot rac{\ln\!\left(rac{ extsf{P}_1 - m_v \cdot v_b^2}{ extsf{P}_2 - m_v \cdot v_b^2}
ight)}{lpha}
ight]$$

$$\underbrace{\text{ex}}_{0.350871} = \sin\!\left(\frac{62^{\,\circ}}{2}\right) \cdot \frac{\ln\!\left(\frac{800\mathrm{N} - 0.76\mathrm{kg/m} \cdot (25.81\mathrm{m/s})^2}{550\mathrm{N} - 0.76\mathrm{kg/m} \cdot (25.81\mathrm{m/s})^2}\right)}{160.2^{\,\circ}}$$

Open Calculator 🕑

Open Calculator 🕑

101) Correcting Factor for Belt Length given Number of Belts Required 🖸

105) Mass of One Meter Length of V-Belt given Belt Tension in Loose Side 🖸

$$\mathbf{P}_{1} - \left(e^{\mu \cdot \frac{\alpha}{\sin\left(\frac{\theta}{2}\right)}}\right) \cdot \mathbf{P}_{2}$$

$$\mathbf{w}_{v} = \frac{\mathbf{P}_{1} - \left(e^{\mu \cdot \frac{\alpha}{\sin\left(\frac{\theta}{2}\right)}}\right) \cdot \mathbf{P}_{2}}{\mathbf{v}_{b}^{2} \cdot \left(1 - \left(e^{\mu \cdot \frac{\alpha}{\sin\left(\frac{\theta}{2}\right)}}\right)\right)}$$

$$\mathbf{ex} \quad 0.759634 \text{kg/m} = \frac{800 \text{N} - \left(e^{0.35 \cdot \frac{1002^{\prime}}{\sin\left(\frac{\theta}{2}\right)}}\right) \cdot 550 \text{N}}{(25.81 \text{m/s})^{2} \cdot \left(1 - \left(e^{0.35 \cdot \frac{1602^{\prime}}{\sin\left(\frac{\theta}{2}\right)}}\right)\right)}$$

$$\mathbf{106} \text{ Number of V Belts Required for Given Applications } \mathbf{C}$$

$$\begin{aligned} & \mathbf{fx} \mathbf{N} = \mathbf{P}_{t} \cdot \frac{\mathbf{F}_{a}\mathbf{r}}{(\mathbf{F}_{c}\mathbf{r}) \cdot (\mathbf{F}_{d}\mathbf{r}) \cdot \mathbf{P}_{r}} \end{aligned} \\ & \mathbf{ex} 2.000837 = 6.45 \mathrm{kW} \cdot \frac{1.30}{1.08 \cdot 0.94 \cdot 4.128 \mathrm{kW}} \end{aligned}$$

Open Calculator

Variables Used

- a Minor Axis of Pulley Arm (Millimeter)
- ap Belt Pitch Line and Pulley Tip Circle Radius Width (Millimeter)
- **b** Width of Belt (Millimeter)
- **b**_a Major Axis of Pulley Arm (Millimeter)
- C Centre Distance between Pulleys (Millimeter)
- C_s Service Correction Factor
- d Diameter of Small Pulley (Millimeter)
- D Diameter of Big Pulley (Millimeter)
- do Pulley Outside Diameter (Millimeter)
- d' Pulley Pitch Diameter (Millimeter)
- **d'1** Pitch Diameter of Smaller Pulley (Millimeter)
- d'2 Pitch Diameter of Larger Pulley (Millimeter)
- Fa Load Correction Factor
- Far Correction Factor for Industrial Service
- Fcr Correction Factor for Belt Length
- Fdr Correction Factor for Arc of Contact
- i Transmission Ratio of Belt Drive
- Area Moment of Inertia of Arms (Millimeter4)
- I Datum Length of Belt (Millimeter)
- L Belt Length (Millimeter)
- Mass of Meter Length of Belt (Kilogram per Meter)
- Mb Bending Moment in Pulley's Arm (Newton Millimeter)
- Mt Torque Transmitted by Pulley (Newton Millimeter)
- m_v Mass of Meter Length of V Belt (Kilogram per Meter)
- N Number of Belts
- **n₁** Speed of Smaller Pulley (Revolution per Minute)
- **n₂** Speed of Larger Pulley (*Revolution per Minute*)
- N_{pu} Number of Arms in Pulley
- P Tangential Force at End of Each Pulley Arm (Newton)
- P₁ Belt Tension on Tight Side (Newton)

- P2 Belt Tension on Loose Side (Newton)
- Pc Circular Pitch for Synchronous Belt (Millimeter)
- Pd Design Power of Belt Drive (Kilowatt)
- Pe Effective Pull in V Belt (Newton)
- P_i Initial Tension in Belt (Newton)
- Pmax Maximum Tension in Belt (Newton)
- Pr Power Rating of Single V-Belt (Kilowatt)
- Ps Standard Capacity of Belt (Kilowatt)
- Pt Power transmitted by belt (Kilowatt)
- **R** Radius of Rim of Pulley (*Millimeter*)
- t Thickness of Belt (Millimeter)
- T1 Number of teeth on smaller pulley
- T₂ Number of teeth on larger pulley
- T_b Belt Tension due to Centrifugal Force (Newton)
- Vb Belt Velocity (Meter per Second)
- Vo Optimum Velocity of Belt (Meter per Second)
- Z Number of teeth on belt
- α Wrap Angle on Pulley (Degree)
- α_a Wrap Angle for Cross Belt Drive (Degree)
- α_b Wrap Angle on Big Pulley (Degree)
- α_s Wrap Angle on Small Pulley (Degree)
- **θ** V belt angle (Degree)
- µ Coefficient of Friction for Belt Drive
- **σ** Tensile Stress in Belt (Newton per Square Millimeter)
- σ_b Bending stress in pulley's arm (Newton per Square Millimeter)

26/29

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: e, 2.71828182845904523536028747135266249 Napier's constant
- Function: **asin**, asin(Number) The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.
- Function: In, In(Number) The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²) Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Power in Kilowatt (kW) Power Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Angular Velocity in Revolution per Minute (rev/min) Angular Velocity Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm) Torque Unit Conversion
- Measurement: Second Moment of Area in Millimeter^₄ (mm^₄) Second Moment of Area Unit Conversion
- Measurement: Linear Mass Density in Kilogram per Meter (kg/m) Linear Mass Density Unit Conversion

• Measurement: Stress in Newton per Square Millimeter (N/mm²) Stress Unit Conversion

Check other formula lists

• Power Screws Formulas 🖸

Design of Belt Drives Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/19/2024 | 4:22:57 PM UTC

Please leave your feedback here...

