

Radius of Fiber and Axis Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

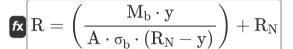
Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...



List of 16 Radius of Fiber and Axis Formulas

Radius of Fiber and Axis

1) Radius of centroidal axis of curved beam given bending stress

Open Calculator 🗗

ex

$$89.72787 \text{mm} = \left(\frac{245000 \text{N*mm} \cdot 21 \text{mm}}{240 \text{mm}^2 \cdot 53 \text{N/mm}^2 \cdot (83.22787 \text{mm} - 21 \text{mm})}\right) + 83.22787 \text{mm}$$

2) Radius of centroidal axis of curved beam given eccentricity between axis

fx
$$m R = R_N + e$$

Open Calculator

- 3) Radius of centroidal axis of curved beam of circular section given radius of inner fiber

$$m R = R_i + rac{d}{2}$$

Open Calculator 🛂

$$\boxed{\texttt{ex}} 86 \text{mm} = 76 \text{mm} + \frac{20 \text{mm}}{2}$$

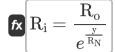
- 4) Radius of centroidal axis of curved beam of rectangular section given radius of inner fiber
- $R = R_i + rac{y}{2}$

Open Calculator 🗗

- $86.5 \text{mm} = 76 \text{mm} + \frac{21 \text{mm}}{2}$
 - 5) Radius of inner fiber of circular curved beam given radius of neutral axis and outer fiber
- $\left| \mathbf{R}_{\mathrm{i}} = \left(\sqrt{4 \cdot \mathrm{R}_{\mathrm{N}}} \sqrt{\mathrm{R}_{\mathrm{o}}}
 ight)^{2}
 ight|$

Open Calculator

- $\boxed{71.36707\mathrm{mm} = \overline{\left(\sqrt{4\cdot83.22787\mathrm{mm}} \sqrt{96\mathrm{mm}}\right)^2}}$
- 6) Radius of inner fiber of curved beam given bending stress at fiber
- $\left| \mathbf{R}_{\mathrm{i}} = rac{\mathrm{M}_{\mathrm{b}} \cdot \mathrm{h}_{\mathrm{i}}}{\mathrm{A} \cdot \mathrm{e} \cdot (\sigma_{\mathrm{b}} \mathrm{i})}
 ight|$


Open Calculator

- $= \frac{245000 \text{N*mm} \cdot 37.5 \text{mm}}{240 \text{mm}^2 \cdot 6.5 \text{mm} \cdot 78.5 \text{N/mm}^2}$
- 7) Radius of inner fiber of curved beam of circular section given radius of centroidal axis
- $R_{i}=R-rac{d}{2}$

Open Calculator

8) Radius of inner fiber of rectangular curved beam given radius of neutral axis and outer fiber

Open Calculator 🗗

9) Radius of inner fibre of curved beam of rectangular section given radius of centroidal axis

$$extbf{R}_{i} = R - rac{y}{2}$$

Open Calculator

10) Radius of neutral axis of curved beam given bending stress

$$R_{N} = \left(rac{M_{b} \cdot y}{A \cdot \sigma_{b} \cdot e}
ight) + y$$

Open Calculator 🗗

11) Radius of neutral axis of curved beam given eccentricity between axis

fx
$$m R_N = R - e$$

Open Calculator

$$= 83.22787 \text{mm} = 89.72787 \text{mm} - 6.5 \text{mm}$$

12) Radius of neutral axis of curved beam of circular section given radius of inner and outer fibre

 $extbf{R}_{ ext{N}} = rac{\left(\sqrt{ ext{R}_{ ext{o}}} + \sqrt{ ext{R}_{ ext{i}}}
ight)^2}{4}$

Open Calculator 🗗

$$85.70831 \mathrm{mm} = \frac{\left(\sqrt{96 \mathrm{mm}} + \sqrt{76 \mathrm{mm}}\right)^2}{4}$$

13) Radius of neutral axis of curved beam of rectangular section given radius of inner and outer fiber

$$R_{N}=rac{y}{\ln\left(rac{R_{o}}{R_{i}}
ight)}$$

Open Calculator

$$\boxed{89.89155 \mathrm{mm} = \frac{21 \mathrm{mm}}{\ln \left(\frac{96 \mathrm{mm}}{76 \mathrm{mm}}\right)}}$$

14) Radius of outer fiber of circular curved beam given radius of neutral axis and inner fiber

$$m R_o = \left(\sqrt{4\cdot R_N} - \sqrt{R_i}
ight)^2$$

Open Calculator

$$\boxed{\texttt{ex}} \left[90.78401 \text{mm} = \left(\sqrt{4 \cdot 83.22787 \text{mm}} - \sqrt{76 \text{mm}}\right)^2\right]$$

15) Radius of outer fiber of rectangular curved beam given radius of neutral axis and inner fiber

fx
$$m R_o = R_i \cdot e^{rac{y}{R_N}}$$

Open Calculator 🗗

$$= 97.81253 \mathrm{mm} = 76 \mathrm{mm} \cdot e^{rac{21 \mathrm{mm}}{83.22787 \mathrm{mm}}}$$

16) Radius of outer fibre of curved beam given bending stress at fiber

$$\mathbf{R}_{\mathrm{o}} = rac{\mathrm{M}_{\mathrm{b}}\cdot\mathrm{h}_{\mathrm{o}}}{\mathrm{A}\cdot\mathrm{e}\cdot(\sigma_{\mathrm{b}}\mathrm{o})}$$

$$= \frac{245000 N^* mm \cdot 48 mm}{240 mm^2 \cdot 6.5 mm \cdot 85 N / mm^2}$$

Variables Used

- A Cross Sectional Area of Curved Beam (Square Millimeter)
- d Diameter of Circular Curved Beam (Millimeter)
- **e** Eccentricity Between Centroidal and Neutral Axis (Millimeter)
- **h**i Distance of Inner Fibre from Neutral Axis (Millimeter)
- **h** Distance of Outer Fibre from Neutral Axis (Millimeter)
- M_b Bending Moment in Curved Beam (Newton Millimeter)
- R Radius of Centroidal Axis (Millimeter)
- R_i Radius of Inner Fibre (Millimeter)
- R_N Radius of Neutral Axis (Millimeter)
- Ro Radius of Outer Fibre (Millimeter)
- y Distance from Neutral Axis of Curved Beam (Millimeter)
- σ_h Bending Stress (Newton per Square Millimeter)
- σ_bi Bending Stress at Inner Fibre (Newton per Square Millimeter)
- σ_ho Bending Stress at Outer Fibre (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: e, 2.71828182845904523536028747135266249
 Napier's constant
- Function: In, In(Number)

 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²)

 Area Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)

 Stress Unit Conversion

Check other formula lists

- Power Screws Formulas
- Castigliano's Theorem for Deflection in Formulas Complex Structures Formulas
- Design of Belt Drives Formulas
- Design of Pressure Vessels
- Design of Rolling Contact Bearing Formulas 🔽

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/25/2024 | 4:00:09 PM UTC

Please leave your feedback here...

