

Shaft Design on Strength Basis Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Shaft Design on Strength Basis Formulas

Shaft Design on Strength Basis 🕑

4) Bending Stress in Shaft Pure Bending Moment

5) Diameter of Shaft given Bending Stress Pure Bending 🕑

fx
$$d = \left(rac{32\cdot M_b}{\pi\cdot\sigma_b}
ight)^{rac{1}{3}}$$
 Open Calculator

ex 46.9mm =
$$\left(\frac{32 \cdot 1800736.547 \text{N*mm}}{\pi \cdot 177.8 \text{N/mm}^2}\right)^{\frac{1}{3}}$$

6) Diameter of Shaft given Tensile Stress in Shaft 🕑

fx
$$\mathbf{d} = \sqrt{4 \cdot \frac{\mathbf{P}_{ax}}{\pi \cdot \sigma_{t}}}$$

ex $46.90001 \text{mm} = \sqrt{4 \cdot \frac{125767.1\text{N}}{\pi \cdot 72.8\text{N/mm}^{2}}}$

Open Calculator 🕑

7) Diameter of Shaft given Torsional Shear Stress in Shaft Pure Torsion 🕑

$$d = \left(16 \cdot \frac{Mt_{shaft}}{\pi \cdot \tau}\right)^{\frac{1}{3}}$$
Open Calculator (*)
$$d = \left(16 \cdot \frac{Mt_{shaft}}{\pi \cdot \tau}\right)^{\frac{1}{3}}$$
(*)
$$46.9mm = \left(16 \cdot \frac{329966.2N*mm}{\pi \cdot 16.29N/mm^2}\right)^{\frac{1}{3}}$$
(*)
$$Maximum Shear Stress in Shaft Bending and Torsion (*)
$$\tau_{smax} = \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau^2}$$
Open Calculator (*)
$$\tau_{smax} = \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau^2}$$
(*)
$$126.3545N/mm^2 = \sqrt{\left(\frac{250.6N/mm^2}{2}\right)^2 + (16.29N/mm^2)^2}$$
(*)
$$126.3545N/mm^2 = \sqrt{\left(\frac{250.6N/mm^2}{2}\right)^2 + (16.29N/mm^2)^2}$$
(*)
$$126.3545N/mm^2 = 177.8N/mm^2 + 72.8N/mm^2$$
(*)
$$10) Normal Stress given Principal Shear Stress in Shaft Bending and Torsion (*)
$$Torsion (*)$$
(*)
$$\sigma_x = 2 \cdot \sqrt{\tau_{max}^2 - \tau^2}$$
(*)
$$Torsion (*)$$$$$$

ex
$$250.6011 \text{N/mm}^2 = 2 \cdot \sqrt{(126.355 \text{N/mm}^2)^2 - (16.29 \text{N/mm}^2)^2}$$

15) Torsional Shear Stress given Principal Shear Stress in Shaft 🕑

fx
$$\tau = \sqrt{\tau_{max}^2 - \left(\frac{\sigma_x}{2}\right)^2}$$

ex 16.29405 N/mm² = $\sqrt{(126.355$ N/mm²)^2 - $\left(\frac{250.6$ N/mm²}{2}\right)^2}
16) Torsional Shear Stress in Shaft Pure Torsion \mathbf{C}

$$\tau = 16 \cdot \frac{Mt_{shaft}}{T}$$

ex
$$16.29$$
 N/mm² = $16 \cdot \frac{329966.2$ N*mm
 $\pi \cdot (46.9$ mm)³

Variables Used

- **d** Diameter of Shaft on Strength Basis (*Millimeter*)
- M_b Bending Moment in Shaft (Newton Millimeter)
- M_t Torque Transmitted by Shaft (Newton Millimeter)
- Mt_{shaft} Torsional Moment in Shaft (Newton Millimeter)
- N Speed of Shaft (Revolution per Minute)
- P Power Transmitted by Shaft (Kilowatt)
- Pax Axial Force on Shaft (Newton)
- σ_b Bending Stress in Shaft (Newton per Square Millimeter)
- σ_t Tensile Stress in Shaft (Newton per Square Millimeter)
- σ_x Normal Stress in Shaft (Newton per Square Millimeter)
- Tmax Principal Shear Stress in Shaft (Newton per Square Millimeter)
- Tsmax Maximum Shear Stress in Shaft (Newton per Square Millimeter)
- *τ* Torsional Shear Stress in Shaft (Newton per Square Millimeter)

7/9

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Power in Kilowatt (kW) Power Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Frequency in Revolution per Minute (rev/min) *Frequency Unit Conversion*
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²) Stress Unit Conversion

9/9

Check other formula lists

- Maximum Shear Stress and Principal Stress Theory Formulas
- Shaft Design on Strength Basis
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/15/2024 | 10:08:38 AM UTC

Please leave your feedback here ...

