Load-and-Resistance Factor Design for Buildings Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 20 Load-and-Resistance Factor Design for Buildings Formulas

Load-and-Resistance Factor Design for Buildings 저

Beams 전

1) Beam Buckling Factor 1
$f \mathrm{x} \mathrm{X}_{1}=\left(\frac{\pi}{\mathrm{S}_{\mathrm{x}}}\right) \cdot \sqrt{\frac{\mathrm{E} \cdot \mathrm{G} \cdot \mathrm{J} \cdot \mathrm{A}}{2}}$
ex $3005.653=\left(\frac{\pi}{35 \mathrm{~mm}^{3}}\right) \cdot \sqrt{\frac{200 \mathrm{GPa} \cdot 80 \mathrm{GPa} \cdot 21.9 \cdot 6400 \mathrm{~mm}^{2}}{2}}$
2) Beam Buckling Factor 2 (I)
$f \mathrm{x} \mathrm{X}_{2}=\left(\frac{4 \cdot \mathrm{C}_{\mathrm{w}}}{\mathrm{I}_{\mathrm{y}}}\right) \cdot\left(\frac{\mathrm{S}_{\mathrm{x}}}{\mathrm{G} \cdot \mathrm{J}}\right)^{2}$
ex $63.85396=\left(\frac{4 \cdot 0.2}{5000 \mathrm{~mm}^{4} / \mathrm{mm}}\right) \cdot\left(\frac{35 \mathrm{~mm}^{3}}{80 \mathrm{GPa} \cdot 21.9}\right)^{2}$
3) Critical Elastic Moment \subseteq
fx $\mathrm{M}_{\text {cr }}=\left(\frac{\mathrm{C}_{\mathrm{b}} \cdot \pi}{\mathrm{L}}\right) \cdot \sqrt{\left(\left(\mathrm{E} \cdot \mathrm{I}_{\mathrm{y}} \cdot \mathrm{G} \cdot \mathrm{J}\right)+\left(\mathrm{I}_{\mathrm{y}} \cdot \mathrm{C}_{\mathrm{w}} \cdot\left(\frac{\pi \cdot \mathrm{E}}{(\mathrm{L})^{2}}\right)\right)\right)}$
$6.791907 \mathrm{~N}^{*} \mathrm{~m}=\left(\frac{1.960 \cdot \pi}{12 \mathrm{~m}}\right) \cdot \sqrt{\left(\left(200 \mathrm{GPa} \cdot 5000 \mathrm{~mm}^{4} / \mathrm{mm} \cdot 80 \mathrm{GPa} \cdot 21.9\right)+\left(5000 \mathrm{~mm}^{4} / \mathrm{mm} \cdot 0.2 \cdot\left(\frac{\pi \cdot \varepsilon_{2}}{1}\right.\right.\right.}$
4) Critical Elastic Moment for Box Sections and Solid Bars
$\mathrm{fx} \mathrm{M}_{\mathrm{bs}}=\frac{57000 \cdot \mathrm{C}_{\mathrm{b}} \cdot \sqrt{\mathrm{J} \cdot \mathrm{A}}}{\frac{\mathrm{L}}{\mathrm{r}_{\mathrm{y}}}}$
5) Limiting Buckling Moment
fx $\mathrm{M}_{\mathrm{r}}=\mathrm{F}_{\mathrm{l}} \cdot \mathrm{S}_{\mathrm{x}}$
Open Calculator
ex $3.85 \mathrm{kN}^{*} \mathrm{~m}=110 \mathrm{MPa} \cdot 35 \mathrm{~mm}^{3}$
6) Limiting Laterally Unbraced Length for Full Plastic Bending Capacity for I and Channel Sections
$f \mathrm{x} \mathrm{L}_{\mathrm{p}}=\frac{300 \cdot \mathrm{r}_{\mathrm{y}}}{\sqrt{\mathrm{F}_{\mathrm{yf}}}}$
ex $200 \mathrm{~mm}=\frac{300 \cdot 20 \mathrm{~mm}}{\sqrt{900 \mathrm{MPa}}}$
7) Limiting Laterally Unbraced Length for Full Plastic Bending Capacity for Solid Bar and Box Beams
$f x L_{p}=\frac{3750 \cdot\left(\frac{r_{y}}{M_{p}}\right)}{\sqrt{J \cdot A}}$
ex $200.3315 \mathrm{~mm}=\frac{3750 \cdot\left(\frac{20 \mathrm{~mm}}{1000 \mathrm{~N}^{*} \mathrm{~mm}}\right)}{\sqrt{21.9 \cdot 6400 \mathrm{~mm}^{2}}}$
8) Limiting Laterally Unbraced Length for Inelastic Lateral Buckling
$\mathrm{fx} \mathrm{L}_{\mathrm{lim}}=\left(\frac{\mathrm{r}_{\mathrm{y}} \cdot \mathrm{X}_{1}}{\mathrm{~F}_{\mathrm{yw}}-\mathrm{F}_{\mathrm{r}}}\right) \cdot \sqrt{1+\sqrt{1+\left(\mathrm{X}_{2} \cdot \mathrm{~F}_{\mathrm{l}}^{2}\right)}}$
ex $30235.04 \mathrm{~mm}=\left(\frac{20 \mathrm{~mm} \cdot 3005}{139 \mathrm{MPa}-80.0 \mathrm{MPa}}\right) \cdot \sqrt{1+\sqrt{1+\left(64 \cdot(110 \mathrm{MPa})^{2}\right)}}$
9) Limiting Laterally Unbraced Length for Inelastic Lateral Buckling for Box Beams 工
$f \mathrm{~L} \mathrm{~L}_{\mathrm{r}}=\frac{2 \cdot \mathrm{r}_{\mathrm{y}} \cdot \mathrm{E} \cdot \sqrt{\mathrm{J} \cdot \mathrm{A}}}{\mathrm{M}_{\mathrm{r}}}$
ex $777.9314 \mathrm{~mm}=\frac{2 \cdot 20 \mathrm{~mm} \cdot 200 \mathrm{GPa} \cdot \sqrt{21.9 \cdot 6400 \mathrm{~mm}^{2}}}{3.85 \mathrm{kN}^{*} \mathrm{~m}}$
10) Maximum Laterally Unbraced Length for Plastic Analysis
$f \mathbf{x} L_{p d}=r_{y} \cdot \frac{3600+2200 \cdot\left(\frac{\mathrm{M}_{1}}{\mathrm{M}_{\mathrm{p}}}\right)}{\mathrm{F}_{\mathrm{yc}}}$
ex $424.4444 \mathrm{~mm}=20 \mathrm{~mm} \cdot \frac{3600+2200 \cdot\left(\frac{100 \mathrm{~N}^{*} \mathrm{~mm}}{1000 \mathrm{~N}^{*} \mathrm{~mm}}\right)}{180 \mathrm{MPa}}$
11) Maximum Laterally Unbraced Length for Plastic Analysis in Solid Bars and Box Beams
$f \times \mathrm{L}_{\mathrm{pd}}=\frac{\mathrm{r}_{\mathrm{y}} \cdot\left(5000+3000 \cdot\left(\frac{\mathrm{M}_{1}}{\mathrm{M}_{\mathrm{p}}}\right)\right)}{\mathrm{F}_{\mathrm{y}}}$
ex $424 \mathrm{~mm}=\frac{20 \mathrm{~mm} \cdot\left(5000+3000 \cdot\left(\frac{100 \mathrm{~N}^{*} \mathrm{~mm}}{1000 \mathrm{~N}^{*} \mathrm{~mm}}\right)\right)}{250 \mathrm{MPa}}$
12) Plastic Moment
fx $\mathrm{M}_{\mathrm{p}}=\mathrm{F}_{\mathrm{yw}} \cdot \mathrm{Z}_{\mathrm{p}}$
ex $1000.8 \mathrm{~N}^{*} \mathrm{~mm}=139 \mathrm{MPa} \cdot 0.0072 \mathrm{~mm}^{3}$
13) Specified Minimum Yield Stress for Web given Limiting Laterally Unbraced Length
$f \mathrm{fx} \mathrm{F}_{\mathrm{yw}}=\left(\frac{\mathrm{r}_{\mathrm{y}} \cdot \mathrm{X}_{1} \cdot \sqrt{1+\sqrt{1+\left(\mathrm{X}_{2} \cdot \mathrm{~F}_{\mathrm{l}}^{2}\right)}}}{\mathrm{L}_{\mathrm{lim}}}\right)+\mathrm{F}_{\mathrm{r}}$
$139.0001 \mathrm{MPa}=\left(\frac{20 \mathrm{~mm} \cdot 3005 \cdot \sqrt{1+\sqrt{1+\left(64 \cdot(110 \mathrm{MPa})^{2}\right)}}}{30235 \mathrm{~mm}}\right)+80.0 \mathrm{MPa}$

Columns

14) Critical Buckling Stress when Slenderness Parameter is greater than 2.25
$\mathrm{fx} \mathrm{F}_{\mathrm{cr}}=\frac{0.877 \cdot \mathrm{~F}_{\mathrm{y}}}{\lambda_{\mathrm{c}}}$
ex $97.44444 \mathrm{MPa}=\frac{0.877 \cdot 250 \mathrm{MPa}}{2.25}$
15) Critical Buckling Stress when Slenderness Parameter is Less than 2.25
$f \mathrm{fx} \mathrm{F}_{\mathrm{cr}}=0.658^{\lambda_{\mathrm{c}}} \cdot \mathrm{F}_{\mathrm{y}}$
ex $97.48735 \mathrm{MPa}=0.658^{2.25} \cdot 250 \mathrm{MPa}$
16) Maximum Load on Axially Loaded Members
$\mathrm{fx}_{\mathrm{P}} \mathrm{P}_{\mathrm{u}}=0.85 \cdot \mathrm{~A}_{\mathrm{g}} \cdot \mathrm{F}_{\mathrm{cr}}$
ex $296.82 \mathrm{kN}=0.85 \cdot 3600 \mathrm{~mm}^{2} \cdot 97 \mathrm{MPa}$
17) Slenderness Parameter
$\mathrm{fx} \lambda_{\mathrm{c}}=\left(\frac{\mathrm{k} \cdot \mathrm{l}}{\mathrm{r}}\right)^{2} \cdot\left(\frac{\mathrm{~F}_{\mathrm{y}}}{286220}\right)$
ex $2.505956=\left(\frac{5 \cdot 932 \mathrm{~mm}}{87 \mathrm{~mm}}\right)^{2} \cdot\left(\frac{250 \mathrm{MPa}}{286220}\right)$

Shear in Buildings

18) Shear Capacity for Web Slenderness less than Alpha
$f \mathrm{f} \mathrm{V}_{\mathrm{u}}=0.54 \cdot \mathrm{~F}_{\mathrm{yw}} \cdot \mathrm{A}_{\mathrm{w}}$
ex $6.3801 \mathrm{kN}=0.54 \cdot 139 \mathrm{MPa} \cdot 85 \mathrm{~mm}^{2}$
19) Shear Capacity if Web Slenderness is between 1 and 1.25 alpha
$f \mathrm{x} \mathrm{V}_{\mathrm{u}}=\frac{0.54 \cdot \mathrm{~F}_{\mathrm{yw}} \cdot \mathrm{A}_{\mathrm{w}} \cdot \alpha}{\frac{H}{\mathrm{t}_{\mathrm{w}}}}$
ex $6.220598 \mathrm{kN}=\frac{0.54 \cdot 139 \mathrm{MPa} \cdot 85 \mathrm{~mm}^{2} \cdot 39}{\frac{20000 \mathrm{~mm}}{50.0 \mathrm{~mm}}}$
20) Shear Capacity if Web Slenderness is greater than 1.25 alpha
$f \mathrm{x} \mathrm{V}_{\mathrm{u}}=\frac{23760 \cdot \mathrm{k} \cdot \mathrm{A}_{\mathrm{w}}}{\left(\frac{\mathrm{H}}{\mathrm{t}_{\mathrm{w}}}\right)^{2}}$
ex $6.31125 \mathrm{kN}=\frac{23760 \cdot 5 \cdot 85 \mathrm{~mm}^{2}}{\left(\frac{2000 \mathrm{~mm}}{50.0 \mathrm{~mm}}\right)^{2}}$

Variables Used

- A Cross Sectional Area in Steel Structures (Square Millimeter)
- $\mathbf{A}_{\mathbf{g}}$ Gross Cross-Sectional Area (Square Millimeter)
- $\mathbf{A}_{\mathbf{w}}$ Web Area (Square Millimeter)
- $\mathbf{C}_{\mathbf{b}}$ Moment Gradient Factor
- C_{w} Warping Constant
- E Elastic Modulus of Steel (Gigapascal)
- $\mathrm{F}_{\text {cr }}$ Critical Buckling Stress (Megapascal)
- FI Smaller Yield Stress (Megapascal)
- F_{r} Compressive Residual Stress in Flange (Megapascal)
- Fy Yield Stress of Steel (Megapascal)
- $\mathbf{F y c}_{\mathbf{y c}}$ Minimum Yield Stress of Compression Flange (Megapascal)
- $\mathrm{F}_{\mathbf{y f}}$ Flange Yield Stress (Megapascal)
- F_{yw} Specified Minimum Yield Stress (Megapascal)
- G Shear Modulus (Gigapascal)
- H Height of Web (Millimeter)
- $\mathrm{I}_{\mathbf{y}}$ Y Axis Moment of Inertia (Millimeter ${ }^{4}$ per Millimeter)
- J Torsional Constant
- k Effective Length Factor
- I Effective Column Length (Millimeter)
- L Unbraced Length of Member (Meter)
- Llim Limiting Length (Millimeter)
- L_{p} Limiting Laterally Unbraced Length (Millimeter)
- L_{pd} Laterally Unbraced Length for Plastic Analysis (Millimeter)
- $\mathbf{L}_{\mathbf{r}}$ Limiting Length for Inelastic Buckling (Millimeter)
- \mathbf{M}_{1} Smaller Moments of Unbraced Beam (Newton Millimeter)
- $\mathbf{M}_{\mathbf{b s}}$ Critical Elastic Moment for Box Section (Newton Meter)
- $\mathbf{M}_{\mathbf{c r}}$ Critical Elastic Moment (Newton Meter)
- $\mathbf{M}_{\mathbf{p}}$ Plastic Moment (Newton Millimeter)
- $\mathbf{M}_{\mathbf{r}}$ Limiting Buckling Moment (Kilonewton Meter)
- $\mathbf{P}_{\mathbf{u}}$ Maximum Axial Load (Kilonewton)
- r Radius of Gyration (Millimeter)
- $\mathbf{r}_{\mathbf{y}}$ Radius of Gyration about Minor Axis (Millimeter)
- $\mathbf{S}_{\mathbf{x}}$ Section Modulus about Major Axis (Cubic Millimeter)
- $\mathbf{t}_{\mathbf{w}}$ Web Thickness (Millimeter)
- $\mathbf{V}_{\mathbf{u}}$ Shear Capacity (Kilonewton)
- X_{1} Beam Buckling Factor 1
- X_{2} Beam Buckling Factor 2
- $\mathbf{Z}_{\mathbf{p}}$ Plastic Modulus (Cubic Millimeter)
- α Separation Ratio
- $\boldsymbol{\lambda}_{\mathbf{c}}$ Slenderness Parameter

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m), Millimeter (mm)

Length Unit Conversion

- Measurement: Volume in Cubic Millimeter (mm^{3})

Volume Unit Conversion

- Measurement: Area in Square Millimeter $\left(\mathrm{mm}^{2}\right)$

Area Unit Conversion

- Measurement: Pressure in Gigapascal (GPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Moment of Force in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$), Kilonewton Meter ($\mathrm{kN}{ }^{*} \mathrm{~m}$), Newton Millimeter ($\mathrm{N}^{*} \mathrm{~mm}$) Moment of Force Unit Conversion
- Measurement: Moment of Inertia per Unit Length in Millimeter ${ }^{4}$ per Millimeter ($\mathrm{mm}^{4} / \mathrm{mm}$)

Moment of Inertia per Unit Length Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Allowable-Stress Design Formulas
- Base and Bearing Plates Formulas
- Bearing, Stresses, Plate Girders \& Ponding Considerations Formulas
- Cold Formed or Light Weighted Steel Structures Formulas
- Composite Construction in Buildings Formulas
- Design of Stiffeners under Loads Formulas \int
- Economical Structural Steel Formulas
- Load-and-Resistance Factor Design for Buildings Formulas凸
- Number of Connectors Required for Building Construction Formulas
- Webs under Concentrated Loads Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

