

FAITS Appareils Formules

calculatrices!

Exemples!

conversions!

Signet calculatoratoz.com, unitsconverters.com

Couverture la plus large des calculatrices et croissantes - 30 000+ calculatrices !

Calculer avec une unité différente pour chaque variable - Dans la conversion d'unité intégrée!

La plus large collection de mesures et d'unités - 250+ Mesures!

N'hésitez pas à PARTAGER ce document avec vos amis !

Veuillez laisser vos commentaires ici...

Liste de 21 FAITS Appareils Formules

FAITS Appareils

Analyse de la ligne de transmission CA

1) Conductance efficace de la charge

$$\left| \mathbf{G}_{\mathrm{eff}} = rac{\mathrm{P}_{\mathrm{re}}}{\mathrm{V}_{\mathrm{n}}^{2}}
ight|$$

= 1.078326S = $\frac{440W}{(20.2V)^2}$

$$oldsymbol{eta} eta' = eta \cdot \sqrt{(1 - ext{K}_{ ext{se}}) \cdot (1 - ext{k}_{ ext{sh}})}$$

ex $1.296919 = 2.9 \cdot \sqrt{(1-0.6) \cdot (1-0.5)}$

 $\boxed{\texttt{ex} \ 32 \texttt{A} = 42 \texttt{A} - 10.0 \texttt{A}}$

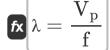
Ouvrir la calculatrice 🗗

Ouvrir la calculatrice

Ouvrir la calculatrice

4) Longueur de ligne électrique

fx $\theta = eta' \cdot L$


Ouvrir la calculatrice 🗗

Ouvrir la calculatrice 🗗

Ouvrir la calculatrice 🗗

Ouvrir la calculatrice 🗗

- $\mathbf{ex} \ 20.62648^{\circ} = 1.2 \cdot 0.3 \mathrm{m}$
- 5) Propagation de la longueur d'onde dans une ligne sans perte

- $oxed{ex} 0.0112 \mathrm{m} = rac{0.56 \mathrm{m/s}}{50 \mathrm{Hz}}$
- 6) Propagation de la vitesse dans une ligne sans perte
- $\left| \mathbf{v}_{\mathrm{p}} = rac{1}{\sqrt{\mathbf{l} \cdot \mathbf{c}}}
 ight|$
- $oxed{ex} 0.566139 \mathrm{m/s} = rac{1}{\sqrt{2.4 \mathrm{H} \cdot 1.3 \mathrm{F}}}$
- 7) Tension de ligne de Thevenin
- $V_{
 m th} = rac{V_{
 m s}}{\cos(heta)}$
- $\texttt{ex} \ 57.4656 \text{V} = \frac{54 \text{V}}{\cos(20°)}$

Compensateur synchrone statique (STATCOM) 🗗

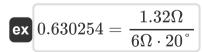
- 8) Tension de séquence positive de STATCOM 🖸
- fx $V_{
 m po} = \Delta V_{
 m ref} + X_{
 m droop} \cdot I_{
 m r(max)}$

Ouvrir la calculatrice 🚰

Ouvrir la calculatrice

 $85.25 V = 15.25 V + 10 \Omega \cdot 7 A$

- 9) Vecteur d'erreur RMS dans la distribution de charge sous STATCOM 🛂


 $\mathrm{E}_{\mathrm{rms}} = \sqrt{\left(rac{1}{\mathrm{T}}
ight)\cdot\int\Bigl(\left(\epsilon_{1}
ight)^{2}+\left(\epsilon_{2}
ight)^{2}+\left(\epsilon_{3}
ight)^{2}\cdot x,x,0,\mathrm{T}\Bigr)}\,.$

 $oxed{ex} 4.182105 = \sqrt{\left(rac{1}{2 ext{s}}
ight) \cdot \int \left((2.6)^2 + (2.8)^2 + (1.7)^2 \cdot x, x, 0, 2 ext{s}
ight)}$

Compensateur série synchrone statique (SSSC) 🗗

- 10) Degré de rémunération en série 🗲
- $K_{
 m se} = rac{X_{
 m c}}{Z_{
 m r} \cdot heta}$

Ouvrir la calculatrice 🖸

fx

11) Flux de puissance dans SSSC

 $\left| \mathbf{P}_{\mathrm{sssc}} = \mathbf{P}_{\mathrm{max}} + rac{\mathbf{V}_{\mathrm{se}} \cdot \mathbf{I}_{\mathrm{sh}}}{\mathbf{I}}
ight|$

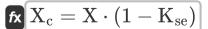
Ouvrir la calculatrice 🗗

12) Fréquence de résonance électrique pour la compensation des condensateurs en série

 $\mathbf{f}_{\mathrm{r(se)}} = f_{\mathrm{op}} \cdot \sqrt{1 - K_{\mathrm{se}}}$

Ouvrir la calculatrice

 $\mathbf{ex} \left[37.94733 \text{Hz} = 60.0 \text{Hz} \cdot \sqrt{1 - 0.6} \right]$


13) Fréquence de résonance pour la compensation du condensateur shunt

 $\mathbf{f_{r(sh)}} = \mathbf{f_{op}} \cdot \sqrt{rac{1}{1-k_{sh}}}$

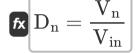
Ouvrir la calculatrice

 $oxed{ 84.85281 ext{Hz} = 60.0 ext{Hz} \cdot \sqrt{rac{1}{1-0.5}} }$

14) Réactance série des condensateurs 🗗

ex
$$1.32\Omega=3.3\Omega\cdot(1-0.6)$$

Compensateur de var statique (SVC)


15) Changement en régime permanent de la tension SVC 🚰

$$\Delta
m V_{
m svc} = rac{
m K_N}{
m K_N + K_g} \cdot \Delta
m V_{
m ref} \, .$$

Ouvrir la calculatrice

$$\mathbf{ex} \left[7.537356 \mathrm{V} = rac{8.6}{8.6 + 8.8} \cdot 15.25 \mathrm{V}
ight]$$

16) Facteur de distorsion de tension dans un filtre à réglage unique 🗗

Ouvrir la calculatrice 🗗

17) Facteur de distorsion harmonique totale

$$ag{THD} = rac{1}{\mathrm{V_{in}}} \cdot \sqrt{\sum \left(x, 2, \mathrm{N_h}, \mathrm{V_n^2}
ight)}$$

Ouvrir la calculatrice 🖸

$$=$$
 $8.533519 = rac{1}{4.1 ext{V}} \cdot \sqrt{\sum \left(x, 2, 4, \left(20.2 ext{V}
ight)^2
ight)}$

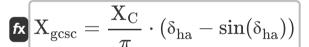
Condensateur série contrôlé par thyristor (TCSC)

18) Courant TCR

fx
$$I_{tcr} = B_{tcr} \cdot \sigma_{tcr} \cdot V_{tcr}$$

Ouvrir la calculatrice 🗗

$$\begin{array}{c} \textbf{ex} \ 0.929911 \textbf{A} = 1.6 \textbf{S} \cdot 9^{\circ} \cdot 3.7 \textbf{V} \\ \end{array}$$


19) Réactance capacitive du TCSC 🛂

$$\mathbf{x} \mathbf{X}_{ ext{tcsc}} = rac{\mathbf{X}_{ ext{C}}}{1 - rac{\mathbf{X}_{ ext{C}}}{\mathbf{X}_{ ext{tcr}}}}$$

Ouvrir la calculatrice 🗗

$$ext{ex} 4.311258 ext{F} = rac{3.5\Omega}{1 - rac{3.5\Omega}{18.6\Omega}}$$

20) Réactance efficace du GCSC 🔽

Ouvrir la calculatrice 🗗

$$oxed{ex} 419.9998\Omega = rac{3.5\Omega}{\pi} \cdot (60 ext{cyc} - \sin(60 ext{cyc}))$$

21) Tension du condensateur série contrôlé par thyristor 🗲

fx
$$V_{
m tcsc} = I_{
m line} \cdot X_{
m line} - V_{
m dl}$$

Ouvrir la calculatrice 🗗

$$ext{ex} \ 6.022 ext{V} = 3.4 ext{A} \cdot 2.33 \Omega - 1.9 ext{V}$$

Variables utilisées

- B_{tcr} Susceptibilité au TCR dans la SVC (Siemens)
- C Capacité série dans la ligne (Farad)
- D_n Facteur de distorsion de tension dans un filtre à réglage unique
- E_{rms} Vecteur d'erreur RMS
- **f** Fréquence de ligne sans perte (Hertz)
- fop Fréquence du système d'exploitation (Hertz)
- $f_{r(se)}$ Fréquence de résonance du condensateur série (Hertz)
- f_{r(sh)} Fréquence de résonance du condensateur shunt (Hertz)
- **G**eff Conductance efficace en charge (Siemens)
- I_{com} Courant du compensateur (Ampère)
- L Courant de charge dans le compensateur idéal (Ampère)
- I_{line} Courant de ligne dans TCSC (Ampère)
- I_{r(max)} Courant réactif inductif maximum (Ampère)
- I_s Courant source dans le compensateur idéal (Ampère)
- I_{sh} Courant de dérivation de l'UPFC (Ampère)
- Itcr Courant TCR dans SVC (Ampère)
- Ka Gain SVC
- K_N Gain statique SVC
- K_{se} Diplôme en Rémunération de Série
- k_{sh} Diplôme en compensation de shunt
- I Inductance série en ligne (Henry)

- L Longueur de la ligne (Mètre)
- N_h Harmonique d'ordre le plus élevé
- P_{max} Puissance maximale en UPFC (Watt)
- Pre Véritable puissance de charge (Watt)
- P_{sssc} Flux de puissance dans SSSC (Watt)
- T Temps écoulé dans le contrôleur de courant PWM (Deuxième)
- THD Facteur de distorsion harmonique totale
- V_{dl} Chute de tension sur la ligne dans TCSC (Volt)
- V_{in} Tension d'entrée en SVC (Volt)
- V_n Tension efficace en SVC (Volt)
- V_p Propagation de la vitesse dans une ligne sans perte (Mètre par seconde)
- V_{po} Tension de séquence positive dans STATCOM (Volt)
- V_s Tension de fin d'envoi (Volt)
- V_{se} Tension série de l'UPFC (Volt)
- V_{tcr} Tension TCR dans SVC (Volt)
- V_{tcsc} Tension TCSC (Volt)
- V_{th} Tension de ligne de Thevenin (Volt)
- X Réactance de ligne (Ohm)
- X_c Réactance série dans le condensateur (Ohm)
- X_C Capacitif Réactif (Ohm)
- X_{droop} Réactance de statisme dans STATCOM (Ohm)
- X_{qcsc} Réactance efficace dans GCSC (Ohm)
- X_{line} Réactance de ligne dans TCSC (Ohm)

- X_{tcr} Réactance du TCR (Ohm)
- Xtcsc Capacitif Réactif dans TCSC (Farad)
- **Z**_n Impédance naturelle en ligne (Ohm)
- β Constante de phase dans la ligne non compensée
- β' Constante de phase dans la ligne compensée
- δ_{ha} Retenir l'angle dans GCSC (Cycle)
- ΔV_{ref} Tension de référence SVC (Volt)
- ΔV_{SVC} Changement à l'état stable de la tension SVC (Volt)
- ε₁ Vecteur d'erreur dans la ligne 1
- ξ₂ Vecteur d'erreur dans la ligne 2
- E₃ Vecteur d'erreur dans la ligne 3
- θ Longueur de ligne électrique (Degré)
- λ Propagation de la longueur d'onde dans une ligne sans perte (Mètre)
- σ_{tcr} Angle conducteur dans le TCR (Degré)

Constantes, Fonctions, Mesures utilisées

- Constante: pi, 3.14159265358979323846264338327950288
 Constante d'Archimède
- Fonction: cos, cos(Angle)
 Le cosinus d'un angle est le rapport du côté adjacent à l'angle à l'hypoténuse du triangle.
- Fonction: int, int(expr, arg, from, to)
 L'intégrale définie peut être utilisée pour calculer la zone nette signée, qui est la zone au-dessus de l'axe des x moins la zone en dessous de l'axe des x.
- Fonction: sin, sin(Angle)
 Le sinus est une fonction trigonométrique qui décrit le rapport entre la longueur du côté opposé d'un triangle rectangle et la longueur de l'hypoténuse.
- Fonction: sqrt, sqrt(Number)
 Une fonction racine carrée est une fonction qui prend un nombre non négatif comme entrée et renvoie la racine carrée du nombre d'entrée donné.
- Fonction: sum, sum(i, from, to, expr)
 La notation sommation ou sigma (∑) est une méthode utilisée pour écrire une longue somme de manière concise.
- La mesure: Longueur in Mètre (m)

 Longueur Conversion d'unité
- La mesure: Temps in Deuxième (s)

 Temps Conversion d'unité
- La mesure: Courant électrique in Ampère (A)

 Courant électrique Conversion d'unité

- La mesure: La rapidité in Mètre par seconde (m/s)
 La rapidité Conversion d'unité
- La mesure: Du pouvoir in Watt (W)
 Du pouvoir Conversion d'unité
- La mesure: Angle in Degré (°), Cycle (cyc)

 Angle Conversion d'unité
- La mesure: Fréquence in Hertz (Hz) Fréquence Conversion d'unité
- La mesure: Capacitance in Farad (F)
 Capacitance Conversion d'unité
- La mesure: Résistance électrique in Ohm (Ω)
 Résistance électrique Conversion d'unité
- La mesure: Inductance in Henry (H)
 Inductance Conversion d'unité
- La mesure: Longueur d'onde in Mètre (m)
 Longueur d'onde Conversion d'unité
- La mesure: Potentiel électrique in Volt (V)
 Potentiel électrique Conversion d'unité
- La mesure: Transconductance in Siemens (S)

 Transconductance Conversion d'unité

Vérifier d'autres listes de formules

- FAITS Appareils Formules
- Alimentation CA aérienne Formules
- Alimentation CC aérienne
 Formules
- Stabilité du système électrique Formules
- Alimentation CA souterraine
 Formules
- Alimentation CC souterraine
 Formules

N'hésitez pas à PARTAGER ce document avec vos amis !

PDF Disponible en

English Spanish French German Russian Italian Portuguese Polish Dutch

6/9/2024 | 5:01:57 AM UTC

Veuillez laisser vos commentaires ici...

