

High Load Factor Maneuver Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 High Load Factor Maneuver Formulas

High Load Factor Maneuver ©

1) Change in Angle of Attack due to Upward Gust
$f \mathrm{x} \Delta \alpha=\tan \left(\frac{\mathrm{u}}{\mathrm{V}}\right)$
Open Calculator \longleftarrow
ex $0.239735 \mathrm{rad}=\tan \left(\frac{8 \mathrm{~m} / \mathrm{s}}{34 \mathrm{~m} / \mathrm{s}}\right)$
2) Lift Coefficient for given Turn Radius
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{L}}=\frac{\mathrm{W}}{0.5 \cdot \rho_{\infty} \cdot \mathrm{S} \cdot[\mathrm{g}] \cdot \mathrm{R}}$
Open Calculator
ex $0.002=\frac{1800 \mathrm{~N}}{0.5 \cdot 1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 5.08 \mathrm{~m}^{2} \cdot[\mathrm{~g}] \cdot 29495.25 \mathrm{~m}}$
3) Lift Coefficient for given Turn Rate \preceq
$f_{x} \mathrm{C}_{\mathrm{L}}=2 \cdot \mathrm{~W} \cdot \frac{\omega^{2}}{[\mathrm{~g}]^{2} \cdot \rho_{\infty} \cdot \mathrm{n} \cdot \mathrm{S}}$
Open Calculator
ex $0.001998=2 \cdot 1800 \mathrm{~N} \cdot \frac{(1.144 \text { degree } / \mathrm{s})^{2}}{[\mathrm{~g}]^{2} \cdot 1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 1.2 \cdot 5.08 \mathrm{~m}^{2}}$
4) Lift Coefficient for given wing loading and turn radius
$f x \mathrm{C}_{\mathrm{L}}=2 \cdot \frac{\mathrm{~W}_{\mathrm{S}}}{\rho_{\infty} \cdot \mathrm{R} \cdot[\mathrm{g}]}$
Open Calculator
ex $0.001998=2 \cdot \frac{354 \mathrm{~Pa}}{1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 29495.25 \mathrm{~m} \cdot[\mathrm{~g}]}$
5) Load factor for given turn radius for high-performance fighter aircraft $\boxed{\square}$

Open Calculator
ex $1.199994=\frac{(589.15 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}] \cdot 29495.25 \mathrm{~m}}$
6) Load factor for given turn rate for high-performance fighter aircraft
\square
$\mathrm{fx}_{\mathrm{x}} \mathrm{n}=\mathrm{v} \cdot \frac{\omega}{[\mathrm{g}]}$

$$
\mathrm{ex} 1.199523=589.15 \mathrm{~m} / \mathrm{s} \cdot \frac{1.144 \mathrm{degree} / \mathrm{s}}{[\mathrm{~g}]}
$$

7) Minimum Flight Velocity
$f \times V_{\min }=\sqrt{\left(\frac{W}{5}\right) \cdot\left(\frac{2}{\rho}\right) \cdot\left(\frac{1}{C_{L}}\right)}$

Open Calculator

$\mathrm{ex} 589.9388 \mathrm{~m} / \mathrm{s}=\sqrt{\left(\frac{1800 \mathrm{~N}}{4 \mathrm{~m}^{2}}\right) \cdot\left(\frac{2}{1.293 \mathrm{~kg} / \mathrm{m}^{3}}\right) \cdot\left(\frac{1}{0.002}\right)}$
8) Radius of Turn for given Lift Coefficient
$f \mathrm{R}=2$.

$$
\rho_{\infty} \cdot \mathrm{S} \cdot[\mathrm{~g}] \cdot \mathrm{C}_{\mathrm{L}}
$$

ex $29495.25 \mathrm{~m}=2 \cdot \frac{1800 \mathrm{~N}}{1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 5.08 \mathrm{~m}^{2} \cdot[\mathrm{~g}] \cdot 0.002}$
9) Radius of Turn for given Wing Loading
$\mathrm{fx} \mathrm{R}=2 \cdot \frac{\mathrm{~W}_{\mathrm{S}}}{\rho_{\infty} \cdot \mathrm{C}_{\mathrm{L}} \cdot[\mathrm{g}]}$
Open Calculator
ex $29467.72 \mathrm{~m}=2 \cdot \frac{354 \mathrm{~Pa}}{1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 0.002 \cdot[\mathrm{~g}]}$
10) Turn radius for high load factor
$\mathrm{fx} R=\frac{\mathrm{v}^{2}}{[\mathrm{~g}] \cdot \mathrm{n}}$

Open Calculator

$\mathrm{ex} 29495.1 \mathrm{~m}=\frac{(589.15 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}] \cdot 1.2}$
11) Turn Rate for given Lift Coefficient
$f \mathrm{x} \omega=[\mathrm{g}] \cdot\left(\sqrt{\frac{\mathrm{S} \cdot \rho_{\infty} \cdot \mathrm{C}_{\mathrm{L}} \cdot \mathrm{n}}{2 \cdot \mathrm{~W}}}\right)$
Open Calculator
ex 1.144452 degree $/ \mathrm{s}=[\mathrm{g}] \cdot\left(\sqrt{\frac{5.08 \mathrm{~m}^{2} \cdot 1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 0.002 \cdot 1.2}{2 \cdot 1800 \mathrm{~N}}}\right)$
12) Turn Rate for given Wing Loading
$f \times \omega=[g] \cdot\left(\sqrt{\rho_{\infty} \cdot C_{L} \cdot \frac{n}{2 \cdot W_{S}}}\right)$
ex 1.144986 degree $/ \mathrm{s}=[\mathrm{g}] \cdot\left(\sqrt{1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 0.002 \cdot \frac{1.2}{2 \cdot 354 \mathrm{~Pa}}}\right)$

13) Turn Rate for High Load Factor

$f \mathrm{x} \omega=[\mathrm{g}] \cdot \frac{\mathrm{n}}{\mathrm{v}}$

Open Calculator

ex 1.144455 degree $/ \mathrm{s}=[\mathrm{g}] \cdot \frac{1.2}{589.15 \mathrm{~m} / \mathrm{s}}$
14) Velocity for given pull-up maneuver rate
$f_{\mathrm{x}} \mathrm{V}_{\text {pull-up }}=[\mathrm{g}] \cdot \frac{\mathrm{n}_{\text {pull-up }}-1}{\omega}$
Open Calculator 〔
ex $240.1741 \mathrm{~m} / \mathrm{s}=[\mathrm{g}] \cdot \frac{1.489-1}{1.144 \text { degree } / \mathrm{s}}$
15) Velocity given Turn Radius for High Load Factor
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{v}}=\sqrt{\mathrm{R} \cdot \mathrm{n} \cdot[\mathrm{g}]}$
Open Calculator
ex $589.1515 \mathrm{~m} / \mathrm{s}=\sqrt{29495.25 \mathrm{~m} \cdot 1.2 \cdot[\mathrm{~g}]}$
16) Wing Loading for given Turn Radius
$f_{\mathrm{x}} \mathrm{W}_{\mathrm{S}}=\frac{\mathrm{R} \cdot \rho_{\infty} \cdot \mathrm{C}_{\mathrm{L}} \cdot[\mathrm{g}]}{2}$
ex
$354.3308 \mathrm{~Pa}=\frac{29495.25 \mathrm{~m} \cdot 1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 0.002 \cdot[\mathrm{~g}]}{2}$

聿

17) Wing Loading for given Turn Rate

$$
f \mathrm{x} \mathrm{~W}_{\mathrm{S}}=\left([\mathrm{g}]^{2}\right) \cdot \rho_{\infty} \cdot \mathrm{C}_{\mathrm{L}} \cdot \frac{\mathrm{n}}{2 \cdot\left(\omega^{2}\right)}
$$

$$
\text { ex } 354.6108 \mathrm{~Pa}=\left([\mathrm{g}]^{2}\right) \cdot 1.225 \mathrm{~kg} / \mathrm{m}^{3} \cdot 0.002 \cdot \frac{1.2}{2 \cdot\left((1.144 \text { degree } / \mathrm{s})^{2}\right)}
$$

Variables Used

- 5 Aircraft Gross Wing Area (Square Meter)
- C_{L} Lift Coefficient
- \mathbf{n} Load Factor
- $\mathrm{n}_{\text {pull-up }}$ Pull-Up Load Factor
- \mathbf{R} Turn Radius (Meter)
- S Reference Area (Square Meter)
- u Gust Velocity (Meter per Second)
- V Velocity (Meter per Second)
- V Flight Velocity (Meter per Second)
- $\mathbf{V}_{\text {min }}$ Minimum Flight Velocity (Meter per Second)
- $\mathbf{V}_{\text {pull-up }}$ Pull-Up Maneuver Velocity (Meter per Second)
- W Aircraft Weight (Newton)
- W $\mathbf{W}_{\mathbf{S}}$ Wing Loading (Pascal)
- $\Delta \boldsymbol{\alpha}$ Change in Angle of Attack (Radian)
- $\boldsymbol{\rho}$ Air Density (Kilogram per Cubic Meter)
- $\boldsymbol{\rho}_{\infty}$ Freestream Density (Kilogram per Cubic Meter)
- $\boldsymbol{\omega}$ Turn Rate (Degree per Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: tan, tan(Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m)

Length Unit Conversion $\sqrt{ }$

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Radian (rad)

Angle Unit Conversion

- Measurement: Angular Velocity in Degree per Second (degree/s)

Angular Velocity Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

Check other formula lists

- High Load Factor Maneuver Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

