

High Load Factor Maneuver Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 High Load Factor Maneuver Formulas

1) Change in Angle of Attack due to Upward Gust 🗹

4) Lift Coefficient for given wing loading and turn radius

fx
$$n = \frac{v^2}{[g] \cdot R}$$

ex $1.199994 = \frac{(589.15 m/s)^2}{[g] \cdot 29495.25 m}$

6) Load factor for given turn rate for high-performance fighter aircraft 🕑

fx
$$n = v \cdot \frac{\omega}{[g]}$$

ex $1.199523 = 589.15 \text{m/s} \cdot \frac{1.144 \text{degree/s}}{[g]}$

Open Calculator

Open Calculator

7) Minimum Flight Velocity 🕑

$$\mathbf{fx} \quad \mathbf{V}_{\min} = \sqrt{\left(\frac{W}{5}\right) \cdot \left(\frac{2}{\rho}\right) \cdot \left(\frac{1}{C_L}\right)}$$

$$\mathbf{fx} \quad \mathbf{V}_{\min} = \sqrt{\left(\frac{W}{5}\right) \cdot \left(\frac{2}{\rho}\right) \cdot \left(\frac{1}{C_L}\right)}$$

$$\mathbf{fx} \quad \mathbf{fx} = \sqrt{\left(\frac{1800N}{4m^2}\right) \cdot \left(\frac{2}{1.293 \text{kg/m}^3}\right) \cdot \left(\frac{1}{0.002}\right)}$$

$$\mathbf{fx} \quad \mathbf{R} = 2 \cdot \frac{W}{\rho_{\infty} \cdot S \cdot [g] \cdot C_L}$$

$$\mathbf{fx} \quad \mathbf{R} = 2 \cdot \frac{W}{\rho_{\infty} \cdot S \cdot [g] \cdot C_L}$$

$$\mathbf{fx} \quad \mathbf{R} = 2 \cdot \frac{1800N}{1.225 \text{kg/m}^3 \cdot 5.08 \text{m}^2 \cdot [g] \cdot 0.002}$$

$$\mathbf{9} \text{ Radius of Turn for given Wing Loading } \mathbf{fx}$$

$$\mathbf{R} = 2 \cdot \frac{W_S}{\rho_{\infty} \cdot C_L \cdot [g]}$$

$$\mathbf{fx} \quad \mathbf{R} = 2 \cdot \frac{W_S}{\rho_{\infty} \cdot C_L \cdot [g]}$$

$$\mathbf{fx} \quad \mathbf{R} = 2 \cdot \frac{W_S}{\rho_{\infty} \cdot C_L \cdot [g]}$$

10) Turn radius for high load factor 🕑

fx
$$R = \frac{v^2}{[g] \cdot n}$$

ex $29495.1m = \frac{(589.15m/s)^2}{[g] \cdot 1.2}$

11) Turn Rate for given Lift Coefficient

fx
$$\omega = [\mathrm{g}] \cdot \left(\sqrt{rac{\mathrm{S} \cdot
ho_\infty \cdot \mathrm{C_L} \cdot \mathrm{n}}{2 \cdot \mathrm{W}}}
ight)$$

ex
$$1.144452 degree/s = [g] \cdot \left(\sqrt{\frac{5.08 m^2 \cdot 1.225 kg/m^3 \cdot 0.002 \cdot 1.2}{2 \cdot 1800 N}} \right)$$

12) Turn Rate for given Wing Loading 🕑

fx
$$\omega = [\mathrm{g}] \cdot \left(\sqrt{
ho_\infty \cdot \mathrm{C_L} \cdot rac{\mathrm{n}}{2 \cdot \mathrm{W_S}}}
ight)$$

ex
$$1.144986$$
degree/s = [g] $\cdot \left(\sqrt{1.225$ kg/m³ $\cdot 0.002 \cdot \frac{1.2}{2 \cdot 354$ Pa}}\right)

17) Wing Loading for given Turn Rate 🕑

Variables Used

- 5 Aircraft Gross Wing Area (Square Meter)
- CL Lift Coefficient
- n Load Factor
- n_{pull-up} Pull-Up Load Factor
- **R** Turn Radius (Meter)
- **S** Reference Area (Square Meter)
- U Gust Velocity (Meter per Second)
- Velocity (Meter per Second)
- V Flight Velocity (Meter per Second)
- V_{min} Minimum Flight Velocity (Meter per Second)
- V_{pull-up} Pull-Up Maneuver Velocity (Meter per Second)
- W Aircraft Weight (Newton)
- W_S Wing Loading (Pascal)
- Δα Change in Angle of Attack (Radian)
- **p** Air Density (Kilogram per Cubic Meter)
- ρ_{∞} Freestream Density (Kilogram per Cubic Meter)
- **ω** Turn Rate (Degree per Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Pressure in Pascal (Pa) Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Angular Velocity in Degree per Second (degree/s) Angular Velocity Unit Conversion
- Measurement: **Density** in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

Check other formula lists

High Load Factor Maneuver
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/20/2024 | 6:26:52 AM UTC

Please leave your feedback here ...

