
calculatoratoz.com

unitsconverters.com

Parabolic and Transition Curves Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Parabolic and Transition Curves Formulas

Parabolic and Transition Curves $\mathbb{C B}$

Parabolic Curves

1) Distance from Point of Vertical Curve to Lowest Point on Sag Curve
$f x X_{s}=-\left(\frac{G_{I}}{R_{g}}\right)$
ex $-0.19802 \mathrm{~m}=-\left(\frac{10}{50.5 \mathrm{~m}^{-1}}\right)$
2) Elevation of Lowest Point on Sag Curve
$f \mathrm{fx} \mathrm{E}_{\mathrm{s}}=\mathrm{E}_{0}-\left(\frac{\mathrm{G}_{\mathrm{I}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{g}}}\right)$
ex $49.0099 \mathrm{~m}=50 \mathrm{~m}-\left(\frac{(10)^{2}}{2 \cdot 50.5 \mathrm{~m}^{-1}}\right)$
3) Elevation of Point of Vertical Curvature $工$
$f \mathrm{f} \mathrm{E}_{0}=\mathrm{V}-\left(\left(\frac{1}{2}\right) \cdot\left(\mathrm{L}_{\mathrm{c}} \cdot \mathrm{G}_{\mathrm{I}}\right)\right)$
ex $50 \mathrm{~m}=750 \mathrm{~m}-\left(\left(\frac{1}{2}\right) \cdot(140 \mathrm{~m} \cdot 10)\right)$
4) Elevation of Point of Vertical Intersection
$f \mathrm{fx}=\mathrm{E}_{0}+\left(\frac{1}{2}\right) \cdot\left(\mathrm{L}_{\mathrm{c}} \cdot \mathrm{G}_{\mathrm{I}}\right)$
Open Calculator
ex $750 \mathrm{~m}=50 \mathrm{~m}+\left(\frac{1}{2}\right) \cdot(140 \mathrm{~m} \cdot 10)$
5) Elevation of PVC given Elevation of Lowest Point on Sag Curve
$f \mathrm{fx} \mathrm{E}_{0}=\mathrm{E}_{\mathrm{s}}+\left(\frac{\mathrm{G}_{\mathrm{I}}^{2}}{2 \cdot \mathrm{R}_{\mathrm{g}}}\right)$
ex $49.9901 \mathrm{~m}=49 \mathrm{~m}+\left(\frac{(10)^{2}}{2 \cdot 50.5 \mathrm{~m}^{-1}}\right)$
6) Length of Curve using Rate of change of Grade in Parabolic Curves
$f \mathbf{x} \mathrm{~L}_{\mathrm{Pc}}=\frac{\mathrm{G}_{2}-\left(-\mathrm{G}_{\mathrm{I}}\right)}{\mathrm{R}_{\mathrm{g}}}$
Open Calculator
ex $0.356436 \mathrm{~m}=\frac{8-(-10)}{50.5 \mathrm{~m}^{-1}}$
7) Rate of Change of Grade given Distance from PVC to Lowest Point on Sag Curve
$f_{\mathrm{x}} \mathrm{R}_{\mathrm{g}}=-\left(\frac{\mathrm{G}_{\mathrm{I}}}{\mathrm{X}_{\mathrm{s}}}\right)$
Open Calculator
ex $50 \mathrm{~m}^{-1}=-\left(\frac{10}{-0.2 \mathrm{~m}}\right)$

Transition (Spiral) Curves ©

8) Minimum Length of Spiral
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}=\frac{3.15 \cdot\left(\mathrm{~V}_{\mathrm{v}}^{3}\right)}{\mathrm{R}_{\mathrm{t}} \cdot \mathrm{a}_{\mathrm{c}}}$
ex $361.8352 \mathrm{~m}=\frac{3.15 \cdot\left((41 \mathrm{~km} / \mathrm{h})^{3}\right)}{300 \mathrm{~m} \cdot 2}$
9) Radius of Circular Curve Minimum Length
$\mathrm{fx} \mathrm{R}_{\mathrm{t}}=\frac{3.15 \cdot\left(\mathrm{~V}_{\mathrm{v}}^{3}\right)}{\mathrm{L} \cdot \mathrm{a}_{\mathrm{c}}}$
ex $300.0044 \mathrm{~m}=\frac{3.15 \cdot\left((41 \mathrm{~km} / \mathrm{h})^{3}\right)}{361.83 \mathrm{~m} \cdot 2}$
10) Rate of Increase of Radial Acceleration
$\mathrm{fx} \mathrm{a}_{\mathrm{c}}=\frac{3.15 \cdot\left(\mathrm{~V}_{\mathrm{v}}\right)^{3}}{\mathrm{~L} \cdot \mathrm{R}_{\mathrm{t}}}$
Open Calculator
ex $2.000029=\frac{3.15 \cdot(41 \mathrm{~km} / \mathrm{h})^{3}}{361.83 \mathrm{~m} \cdot 300 \mathrm{~m}}$
11) Vehicle Velocity given Minimum Length of Spiral
$f \mathrm{f} \mathrm{V}_{\mathrm{v}}=\left(\frac{\mathrm{L} \cdot \mathrm{R}_{\mathrm{t}} \cdot \mathrm{a}_{\mathrm{c}}}{3.15}\right)^{\frac{1}{3}}$
ex $40.9998 \mathrm{~km} / \mathrm{h}=\left(\frac{361.83 \mathrm{~m} \cdot 300 \mathrm{~m} \cdot 2}{3.15}\right)^{\frac{1}{3}}$

Variables Used

- $\mathbf{a}_{\mathbf{c}}$ Rate of Increase of Radial Acceleration
- E_{0} Elevation of Point of Vertical Curve (Meter)
- $\mathbf{E}_{\mathbf{s}}$ Elevation of Lowest Point on a Sag Curve (Meter)
- \mathbf{G}_{2} Grade at End of Curve
- $\mathbf{G}_{\boldsymbol{I}}$ Grade at Beginning of Curve
- L Minimum Length of Spiral (Meter)
- L_{c} Length of Curve (Meter)
- LPc Length of Parabolic Curves (Meter)
- $\mathbf{R}_{\mathbf{g}}$ Rate of Change of Grade (Per Meter)
- $\mathbf{R}_{\mathbf{t}}$ Radius of Curve (Meter)
- V Elevation of Point of Vertical Intersection (Meter)
- $\mathbf{V}_{\mathbf{v}}$ Vehicle Velocity (Kilometer per Hour)
- $\mathbf{X}_{\mathbf{S}}$ Distance from PVC to Lowest Point on a Sag Curve (Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Kilometer per Hour (km/h) Speed Unit Conversion \preceq
- Measurement: Linear Atomic Density in Per Meter (m^{-1}) Linear Atomic Density Unit Conversion

Check other formula lists

- Circular Curves on Highways and - Structural Numbers for Flexible Roads Formulas
- Parabolic and Transition Curves Formulas凹

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

