
calculatoratoz.com

unitsconverters.com

Thrust and Power Requirements Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Thrust and Power Requirements Formulas

Thrust and Power Requirements $\mathbb{}$ ©

1) Minimum Thrust of aircraft required
$f \mathrm{fx}=\mathrm{P}_{\text {dynamic }} \cdot \mathrm{S} \cdot\left(\mathrm{C}_{\mathrm{D}, 0}+\mathrm{C}_{\mathrm{D}, \mathrm{i}}\right)$
Open Calculator
ex $99.2 \mathrm{~N}=10 \mathrm{~Pa} \cdot 8 \mathrm{~m}^{2} \cdot(0.31+0.93)$
2) Minimum Thrust required for given Lift Coefficient
$f_{\mathrm{x}} \mathrm{T}=\mathrm{P}_{\text {dynamic }} \cdot \mathrm{A} \cdot\left(\mathrm{C}_{\mathrm{D}, 0}+\left(\frac{\mathrm{C}_{\mathrm{L}}^{2}}{\pi \cdot \mathrm{e} \cdot \mathrm{AR}}\right)\right)$ Open Calculator〔

$$
\text { ex } 99.76029 \mathrm{~N}=10 \mathrm{~Pa} \cdot 20 \mathrm{~m}^{2} \cdot\left(0.31+\left(\frac{(1.1)^{2}}{\pi \cdot 0.51 \cdot 4}\right)\right)
$$

3) Minimum Thrust required for given weight
$f x$
Open Calculator
$\mathrm{T}=\left(\mathrm{P}_{\text {dynamic }} \cdot \mathrm{A} \cdot \mathrm{C}_{\mathrm{D}, 0}\right)+\left(\frac{\mathrm{W}_{\text {body }}^{2}}{\mathrm{P}_{\text {dynamic }} \cdot \mathrm{A} \cdot \pi \cdot \mathrm{e} \cdot \mathrm{AR}}\right)$
ex $100.1043 \mathrm{~N}=\left(10 \mathrm{~Pa} \cdot 20 \mathrm{~m}^{2} \cdot 0.31\right)+\left(\frac{(221 \mathrm{~N})^{2}}{10 \mathrm{~Pa} \cdot 20 \mathrm{~m}^{2} \cdot \pi \cdot 0.51 \cdot 4}\right)$
4) Power required for given aerodynamic coefficients
$\mathrm{fx} \mathrm{P}=\mathrm{W}_{\text {body }} \cdot \mathrm{V}_{\infty} \cdot \frac{\mathrm{C}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{L}}}$
Open Calculator
ex $3013.636 \mathrm{~W}=221 \mathrm{~N} \cdot 30 \mathrm{~m} / \mathrm{s} \cdot \frac{0.5}{1.1}$
5) Power required for given required thrust of aircraft
$f \mathrm{f} P=\mathrm{V}_{\infty} \cdot \mathrm{T}$
Open Calculator
ex $3000 \mathrm{~W}=30 \mathrm{~m} / \mathrm{s} \cdot 100 \mathrm{~N}$
6) Power required for given total drag force
$f x \mathrm{P}=\mathrm{F}_{\mathrm{D}} \cdot \mathrm{V}_{\infty}$
Open Calculator
ex $2999.7 \mathrm{~W}=99.99 \mathrm{~N} \cdot 30 \mathrm{~m} / \mathrm{s}$
7) Thrust Angle for Unaccelerated Level Flight for given Drag
$\mathrm{fx} \sigma_{\mathrm{T}}=a \cos \left(\frac{\mathrm{~F}_{\mathrm{D}}}{\mathrm{T}}\right)$
ex $0.014142 \mathrm{rad}=a \cos \left(\frac{99.99 \mathrm{~N}}{100 \mathrm{~N}}\right)$
8) Thrust Angle for Unaccelerated Level Flight for given Lift
$\mathrm{fx} \sigma_{\mathrm{T}}=a \sin \left(\frac{\mathrm{~W}_{\text {body }}-\mathrm{F}_{\mathrm{L}}}{\mathrm{T}}\right)$
ex $0.01 \mathrm{rad}=a \sin \left(\frac{221 \mathrm{~N}-220 \mathrm{~N}}{100 \mathrm{~N}}\right)$
9) Thrust for given coefficients of lift and drag
$f_{\mathrm{x}} \mathrm{T}=\mathrm{C}_{\mathrm{D}} \cdot \frac{\mathrm{W}_{\text {body }}}{\mathrm{C}_{\mathrm{L}}}$
Open Calculator
ex $100.4545 \mathrm{~N}=0.5 \cdot \frac{221 \mathrm{~N}}{1.1}$
10) Thrust for Level and Unaccelerated Flight
$\mathfrak{f x} \mathrm{T}=\frac{\mathrm{F}_{\mathrm{D}}}{\cos \left(\sigma_{\mathrm{T}}\right)}$
Open Calculator
ex $99.995 \mathrm{~N}=\frac{99.99 \mathrm{~N}}{\cos (0.01 \mathrm{rad})}$
11) Thrust of aircraft required for given Lift-to-drag ratio
$f \times \mathrm{T}=\frac{\mathrm{W}_{\text {body }}}{\mathrm{LD}}$
ex $100 \mathrm{~N}=\frac{221 \mathrm{~N}}{2.21}$
12) Thrust of Aircraft required for given required Power
$f_{\mathrm{x}} \mathrm{T}=\frac{\mathrm{P}}{\mathrm{V}_{\infty}}$
Open Calculator
ex $100 \mathrm{~N}=\frac{3000 \mathrm{~W}}{30 \mathrm{~m} / \mathrm{s}}$
13) Thrust of Aircraft required for Level, Unaccelerated Flight
$f \mathrm{f} \quad \mathrm{T}=\mathrm{P}_{\text {dynamic }} \cdot \mathrm{A} \cdot \mathrm{C}_{\mathrm{D}}$
$\mathrm{ex} 100 \mathrm{~N}=10 \mathrm{~Pa} \cdot 20 \mathrm{~m}^{2} \cdot 0.5$
14) Thrust-to-weight ratio
$\mathrm{fx} \mathrm{TW}=\frac{\mathrm{C}_{\mathrm{D}}}{\mathrm{C}_{\mathrm{L}}}$
Open Calculator
ex $0.454545=\frac{0.5}{1.1}$
15) Weight of Aircraft for given Coefficients of Lift and Drag
$f \mathrm{x} \mathrm{W}_{\text {body }}=\mathrm{C}_{\mathrm{L}} \cdot \frac{\mathrm{T}}{\mathrm{C}_{\mathrm{D}}}$
ex $220 \mathrm{~N}=1.1 \cdot \frac{100 \mathrm{~N}}{0.5}$
16) Weight of Aircraft for given Lift-to-Drag Ratio
$f \times W_{\text {body }}=T \cdot L D$
ex $221 \mathrm{~N}=100 \mathrm{~N} \cdot 2.21$
17) Weight of aircraft for given required power
$\mathrm{f} \times \mathrm{W}_{\text {body }}=\mathrm{P} \cdot \frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{V}_{\infty} \cdot \mathrm{C}_{\mathrm{D}}}$
Open Calculator
$220 \mathrm{~N}=3000 \mathrm{~W} \cdot \frac{1.1}{30 \mathrm{~m} / \mathrm{s} \cdot 0.5}$
18) Weight of Aircraft for Level, Unaccelerated Flight at Negligible Thrust Angle
fx $\mathrm{W}_{\text {body }}=\mathrm{P}_{\text {dynamic }} \cdot \mathrm{A} \cdot \mathrm{C}_{\mathrm{L}}$
ex $220 \mathrm{~N}=10 \mathrm{~Pa} \cdot 20 \mathrm{~m}^{2} \cdot 1.1$
19) Weight of Aircraft in Level, Unaccelerated Flight
$f \mathrm{x} \mathrm{W}_{\text {body }}=\mathrm{F}_{\mathrm{L}}+\left(\mathrm{T} \cdot \sin \left(\sigma_{\mathrm{T}}\right)\right)$
ex $221 \mathrm{~N}=220 \mathrm{~N}+(100 \mathrm{~N} \cdot \sin (0.01 \mathrm{rad}))$

Variables Used

- A Area (Square Meter)
- AR Aspect Ratio of a Wing
- C_{D} Drag Coefficient
- $C_{D, 0}$ Zero Lift Drag Coefficient
- $C_{D, i}$ Coefficient Of Drag Due to Lift
- C_{L} Lift Coefficient
- e Oswald Efficiency Factor
- F_{D} Drag Force (Newton)
- F_{L} Lift Force (Newton)
- LD Lift-to-Drag Ratio
- P Power (Watt)
- Pdynamic $^{\text {Dynamic Pressure (Pascal) }}$
- S Reference Area (Square Meter)
- T Thrust (Newton)
- TW Thrust-to-Weight Ratio
- \mathbf{V}_{∞} Freestream Velocity (Meter per Second)
- W $\mathbf{W}_{\text {body }}$ Weight of Body (Newton)
- $\boldsymbol{\sigma}_{\mathbf{T}}$ Thrust Angle (Radian)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sin, $\sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Area in Square Meter (m^{2}) Area Unit Conversion
- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Radian (rad) Angle Unit Conversion

Check other formula lists

- Lift and Drag Requirements Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

