

Propeller-Driven Airplane Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 22 Propeller-Driven Airplane Formulas

Propeller-Driven Airplane

1) Cruise Weight Fraction for Prop-Driven Aircraft

 $ext{FW}_{ ext{cruise prop}} = \expigg(rac{R_{ ext{prop}}\cdot(-1)\cdot c}{LDmax_{ ext{ratio}}\cdot \eta}igg)igg|$

Open Calculator

$$\boxed{ \text{ex} \ 0.7777777 = \exp \bigg(\frac{7126.017 \text{m} \cdot (-1) \cdot 0.6 \text{kg/h/W}}{5.081527 \cdot 0.93} \bigg) }$$

2) Endurance of Propeller-Driven Airplane

 $\text{fx} \left[E_{prop} = \frac{\eta}{c} \cdot \frac{C_L^{1.5}}{C_D} \cdot \sqrt{2 \cdot \rho_\infty \cdot S} \cdot \left(\left(\frac{1}{W_1} \right)^{\frac{1}{2}} - \left(\frac{1}{W_0} \right)^{\frac{1}{2}} \right) \right]$

Open Calculator

$$\boxed{ 454.2055 \text{s} = \frac{0.93}{0.6 \text{kg/h/W}} \cdot \frac{\left(5\right)^{1.5}}{2} \cdot \sqrt{2 \cdot 1.225 \text{kg/m}^3 \cdot 5.11 \text{m}^2} \cdot \left(\left(\frac{1}{3000 \text{kg}}\right)^{\frac{1}{2}} - \left(\frac{1}{5000 \text{kg}}\right)^{\frac{1}{2}} \right) }$$

3) Lift to Drag for Maximum Endurance given Preliminary Endurance for Prop-Driven Aircraft

 $\boxed{\text{LDEmax}_{\text{ratio prop}} = \frac{E \cdot V_{\text{Emax}} \cdot c}{\eta \cdot ln \left(\frac{W_{L, \text{beg}}}{W_{L, \text{end}}}\right)}}$

Open Calculator

 $\boxed{ 85.04913 = \frac{452.0581 \text{s} \cdot 15.6 \text{m/s} \cdot 0.6 \text{kg/h/W}}{0.93 \cdot \ln \left(\frac{400 \text{kg}}{394.1 \text{kg}} \right) } }$

4) Lift to Drag Ratio for Maximum Endurance given Max Lift to Drag Ratio for Prop-Driven Aircraft

 $\kappa \left[ext{LDEmax}_{ ext{ratio}} = 0.866 \cdot ext{LDmax}_{ ext{ratio}}
ight]$

Open Calculator 🗗

5) Lift-to-Drag ratio for given Range of Propeller-Driven Airplane

extstyle ext

Open Calculator

$$extbf{ex} \ 2.5 = 0.6 ext{kg/h/W} \cdot rac{7126.017 ext{m}}{0.93 \cdot ext{ln} \left(rac{5000 ext{kg}}{3000 ext{kg}}
ight)}$$

6) Maximum Lift to Drag Ratio given Lift to Drag Ratio for Max Endurance of Prop-Driven Aircraft

 $ag{LDmax_{ratio}} = rac{LDEmax_{ratio}}{0.866}$

Open Calculator

$$= 5.080831 = \frac{4.40}{0.866}$$

7) Maximum Lift to Drag Ratio given Range for Prop-Driven Aircraft

 $extbf{LDmax}_{
m ratio} = rac{R_{
m prop} \cdot c}{\eta \cdot \ln \left(rac{W_i}{W_f}
ight)}$

Open Calculator

$$= \frac{7126.017 \text{m} \cdot 0.6 \text{kg/h/W}}{0.93 \cdot \ln\left(\frac{450 \text{kg}}{350 \text{kg}}\right)}$$

8) Power Available for Reciprocating Engine-Propeller Combination

 $\mathbf{f}\mathbf{x} \mathbf{P}_{\mathbf{A}} = \mathbf{\eta} \cdot \mathbf{B}\mathbf{P}$

Open Calculator

$$\mathbf{ex} \ 20.6553 \mathbf{W} = 0.93 \cdot 22.21 \mathbf{W}$$

9) Propeller Efficiency for given Endurance of Propeller-Driven Airplane

 $\eta = \frac{E}{\left(\frac{1}{c}\right) \cdot \left(\frac{C_L^{1.5}}{C_D}\right) \cdot \left(\sqrt{2 \cdot \rho_\infty \cdot S}\right) \cdot \left(\left(\left(\frac{1}{W_1}\right)^{\frac{1}{2}}\right) - \left(\left(\frac{1}{W_0}\right)^{\frac{1}{2}}\right)\right)}$

Open Calculator

ex

$$\boxed{0.925603 = \frac{452.0581 \text{s}}{\left(\frac{1}{0.6 \text{kg/h/W}}\right) \cdot \left(\frac{(5)^{1.5}}{2}\right) \cdot \left(\sqrt{2 \cdot 1.225 \text{kg/m}^3 \cdot 5.11 \text{m}^2}\right) \cdot \left(\left(\left(\frac{1}{3000 \text{kg}}\right)^{\frac{1}{2}}\right) - \left(\left(\frac{1}{5000 \text{kg}}\right)^{\frac{1}{2}}\right)\right)}}$$

10) Propeller Efficiency for given Range and Lift-to-Drag Ratio of Propeller-Driven Airplane

$$\eta = R_{prop} \cdot rac{c}{\mathrm{LD} \cdot \left(\mathrm{ln} \left(rac{W_0}{W_1}
ight)
ight)}$$

Open Calculator

ex
$$0.93 = 7126.017 \text{m} \cdot \frac{0.6 \text{kg/h/W}}{2.50 \cdot \left(\ln\left(\frac{5000 \text{kg}}{3000 \text{kg}}\right)\right)}$$

11) Propeller Efficiency for given Range of Propeller-Driven Airplane

$$\eta = R_{prop} \cdot c \cdot rac{C_D}{C_L \cdot ln \Big(rac{W_0}{W_1}\Big)}$$

Open Calculator

ex
$$0.93 = 7126.017 \text{m} \cdot 0.6 \text{kg/h/W} \cdot \frac{2}{5 \cdot \ln \left(\frac{5000 \text{kg}}{3000 \text{kg}} \right)}$$

12) Propeller Efficiency for Reciprocating Engine-Propeller Combination

$$\eta = rac{P_A}{BP}$$

13) Propeller Efficiency given Preliminary Endurance for Prop-Driven Aircraft 🗗

$$\eta = rac{\mathrm{E_p \cdot V_{Emax} \cdot c}}{\mathrm{LDEmax_{ratio} \cdot ln} \Big(rac{\mathrm{W_{L,beg}}}{\mathrm{W_{L,end}}}\Big)}$$

Open Calculator

$$\boxed{0.930511 = \frac{23.4 \text{s} \cdot 15.6 \text{m/s} \cdot 0.6 \text{kg/h/W}}{4.40 \cdot \ln \left(\frac{400 \text{kg}}{394.1 \text{kg}} \right)} }$$

14) Propeller Efficiency given Range for Prop-Driven Aircraft 🖸

$$\eta = rac{R_{prop} \cdot c}{LDmax_{ratio} \cdot ln \Big(rac{W_i}{W_f}\Big)}$$

Open Calculator

© calculatoratoz.com. A softusvista inc. venture!

15) Range of Propeller-Driven Airplane

 $\mathbf{R}_{\mathrm{prop}} = \left(rac{\eta}{\mathrm{c}}
ight) \cdot \left(rac{\mathrm{C_L}}{\mathrm{C_D}}
ight) \cdot \left(\ln\!\left(rac{\mathrm{W_0}}{\mathrm{W_1}}
ight)
ight)$

Open Calculator

 $\boxed{ 7126.017 m = \left(\frac{0.93}{0.6 kg/h/W} \right) \cdot \left(\frac{5}{2} \right) \cdot \left(ln \left(\frac{5000 kg}{3000 kg} \right) \right) }$

16) Range of Propeller-Driven Airplane for given lift-to-drag ratio

 $R_{prop} = \left(rac{\eta}{c}
ight) \cdot (LD) \cdot \left(ln \left(rac{W_0}{W_1}
ight)
ight)$

Open Calculator

 $\boxed{ 7126.017 \mathrm{m} = \left(\frac{0.93}{0.6 \mathrm{kg/h/W}} \right) \cdot (2.50) \cdot \left(\ln \left(\frac{5000 \mathrm{kg}}{3000 \mathrm{kg}} \right) \right) }$

17) Shaft Brake Power for Reciprocating Engine-Propeller Combination

 $BP = rac{P_A}{\eta}$

Open Calculator

 $22.21075 \mathrm{W} = \frac{20.656 \mathrm{W}}{0.93}$

18) Specific Fuel Consumption for given Endurance of Propeller-Driven Airplane

 $c = \frac{\eta}{E} \cdot \frac{C_L^{1.5}}{C_D} \cdot \sqrt{2 \cdot \rho_\infty \cdot S} \cdot \left(\left(\frac{1}{W_1} \right)^{\frac{1}{2}} - \left(\frac{1}{W_0} \right)^{\frac{1}{2}} \right)$

Open Calculator 🗗

poir outoutator 🕒

ex

$$\boxed{0.60285 \text{kg/h/W} = \frac{0.93}{452.0581 \text{s}} \cdot \frac{\left(5\right)^{1.5}}{2} \cdot \sqrt{2 \cdot 1.225 \text{kg/m}^3 \cdot 5.11 \text{m}^2} \cdot \left(\left(\frac{1}{3000 \text{kg}}\right)^{\frac{1}{2}} - \left(\frac{1}{5000 \text{kg}}\right)^{\frac{1}{2}}\right)}$$

19) Specific Fuel Consumption for given Range and Lift-to-Drag Ratio of Propeller-Driven Airplane

$$\mathbf{c} = \left(rac{\eta}{\mathrm{R}_{\mathrm{prop}}}
ight) \cdot (\mathrm{LD}) \cdot \left(\ln \left(rac{\mathrm{W}_0}{\mathrm{W}_1}
ight)
ight)$$

Open Calculator 🚰

$$0.6 {
m kg/h/W} = \left(rac{0.93}{7126.017 {
m m}}
ight) \cdot (2.50) \cdot \left({
m ln} \left(rac{5000 {
m kg}}{3000 {
m kg}}
ight)
ight)$$

20) Specific Fuel Consumption for given Range of Propeller-Driven Airplane

 $\mathbf{r} = \left(rac{\eta}{\mathrm{R}_{\mathrm{prop}}}
ight) \cdot \left(rac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{D}}}
ight) \cdot \left(\mathrm{ln} \left(rac{\mathrm{W}_{\mathrm{0}}}{\mathrm{W}_{\mathrm{1}}}
ight)
ight)$

Open Calculator

$$\boxed{0.6 \text{kg/h/W} = \left(\frac{0.93}{7126.017\text{m}}\right) \cdot \left(\frac{5}{2}\right) \cdot \left(\ln\left(\frac{5000 \text{kg}}{3000 \text{kg}}\right)\right)}$$

21) Specific Fuel Consumption given Preliminary Endurance for Prop-Driven Aircraft

$$\mathbf{k} = rac{\mathrm{LDEmax_{ratio\ prop}} \cdot \eta \cdot \ln\left(rac{W_{\mathrm{L,beg}}}{W_{\mathrm{L,end}}}
ight)}{\mathrm{E} \cdot V_{\mathrm{Emax}}}$$

Open Calculator

$$= \frac{85.04913 \cdot 0.93 \cdot \ln \left(\frac{400 \text{kg}}{394.1 \text{kg}} \right)}{452.0581 \text{s} \cdot 15.6 \text{m/s}}$$

22) Specific Fuel Consumption given Range for Prop-Driven Aircraft

 $\mathbf{x} = rac{\mathbf{\eta} \cdot \mathrm{LDmax_{ratio}} \cdot \ln \left(rac{\mathrm{W_i}}{\mathrm{W_f}}
ight)}{\mathrm{R_{prop}}}$

Open Calculator

Variables Used

- **BP** Brake Power (Watt)
- C Specific Fuel Consumption (Kilogram per Hour per Watt)
- C_D Drag Coefficient
- C1 Lift Coefficient
- E Endurance of Aircraft (Second)
- E_p Preliminary Endurance of Aircraft (Second)
- Eprop Endurance of Propeller Aircraft (Second)
- FWcruise prop Cruise Weight Fraction Propeller Aircraft
- LD Lift-to-Drag Ratio
- LDEmax_{ratio prop} Lift to Drag Ratio at Maximum Endurance Prop
- LDEmax_{ratio} Lift to Drag Ratio at Maximum Endurance
- LDmax_{ratio} Maximum Lift-to-Drag Ratio
- P_▲ Available Power (Watt)
- Rprop Range of Propeller Aircraft (Meter)
- S Reference Area (Square Meter)
- **V**_{Emax} Velocity for Maximum Endurance (Meter per Second)
- W₀ Gross Weight (Kilogram)
- W₁ Weight without Fuel (Kilogram)
- **W**_f Weight at End of Cruise Phase (Kilogram)
- Wi Weight at Start of Cruise Phase (Kilogram)
- W_{L.beg} Weight at Start of Loiter Phase (Kilogram)
- W_{L.end} Weight at End of Loiter Phase (Kilogram)
- n Propeller Efficiency
- ρ_∞ Freestream Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Function: exp, exp(Number)
 n an exponential function, the value of the function changes by a constant factor for every unit change in the
 independent variable.
- Function: In, In(Number)

 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

 Density Unit Conversion
- Measurement: Specific Fuel Consumption in Kilogram per Hour per Watt (kg/h/W) Specific Fuel Consumption Unit Conversion

Check other formula lists

• Jet Airplane Formulas

Propeller-Driven Airplane Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/11/2024 | 9:44:33 AM UTC

Please leave your feedback here...

