
calculatoratoz.com

unitsconverters.com

Lift and Circulation Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Lift and Circulation Formulas

Lift and Circulation

1) Angle of Attack for Circulation developed on Airfoil
$f \mathrm{fx} \alpha=a \sin \left(\frac{\Gamma}{\pi \cdot \mathrm{U} \cdot \mathrm{C}}\right)$
Open Calculator
ex $6.506912^{\circ}=a \sin \left(\frac{62 \mathrm{~m}^{2} / \mathrm{s}}{\pi \cdot 81 \mathrm{~m} / \mathrm{s} \cdot 2.15 \mathrm{~m}}\right)$
2) Angle of Attack for Lift Coefficient on Airfoil
$f \mathrm{x} \alpha=a \sin \left(\frac{\mathrm{C}_{\mathrm{L}} \text { airfoil }}{2 \cdot \pi}\right)$
Open Calculator
ex $6.506638^{\circ}=a \sin \left(\frac{0.712}{2 \cdot \pi}\right)$
3) Chord Length for Circulation developed on Airfoil
$f \mathrm{f} C=\frac{\Gamma}{\pi \cdot U \cdot \sin (\alpha)}$
Open Calculator
$\operatorname{ex} 2.152276 \mathrm{~m}=\frac{62 \mathrm{~m}^{2} / \mathrm{s}}{\pi \cdot 81 \mathrm{~m} / \mathrm{s} \cdot \sin \left(6.5^{\circ}\right)}$
4) Circulation developed on Airfoil
$\mathrm{f}_{\mathrm{x}} \Gamma=\pi \cdot \mathrm{U} \cdot \mathrm{C} \cdot \sin (\alpha)$
Open Calculator
ex $61.93442 \mathrm{~m}^{2} / \mathrm{s}=\pi \cdot 81 \mathrm{~m} / \mathrm{s} \cdot 2.15 \mathrm{~m} \cdot \sin \left(6.5^{\circ}\right)$
5) Circulation for Single Stagnation Point
$\mathrm{fx}_{\mathrm{x}} \Gamma_{\mathrm{c}}=4 \cdot \pi \cdot \mathrm{~V}_{\infty} \cdot \mathrm{R}$
Open Calculator
ex $243.1593 \mathrm{~m}^{2} / \mathrm{s}=4 \cdot \pi \cdot 21.5 \mathrm{~m} / \mathrm{s} \cdot 0.9 \mathrm{~m}$
6) Circulation in Location of Stagnation Points
$\mathrm{fx}_{\mathrm{x}} \Gamma_{\mathrm{c}}=-(\sin (\theta)) \cdot 4 \cdot \pi \cdot \mathrm{~V}_{\infty} \cdot \mathrm{R}$
Open Calculator
ex $243.1593 \mathrm{~m}^{2} / \mathrm{s}=-\left(\sin \left(270^{\circ}\right)\right) \cdot 4 \cdot \pi \cdot 21.5 \mathrm{~m} / \mathrm{s} \cdot 0.9 \mathrm{~m}$
7) Coefficient of Lift for Airfoil
$\mathrm{f}_{\mathrm{x}} \mathrm{C}_{\mathrm{L} \text { airfoil }}=2 \cdot \pi \cdot \sin (\alpha)$
ex $0.711277=2 \cdot \pi \cdot \sin \left(6.5^{\circ}\right)$
8) Lift coefficient for lift force in body moving on fluid
$f_{x} C_{L}=\frac{F_{L}^{\prime}}{A_{p} \cdot 0.5 \cdot \rho \cdot\left(v^{2}\right)}$
Open Calculator 〔
ex $0.944451=\frac{1100 \mathrm{~N}}{1.88 \mathrm{~m}^{2} \cdot 0.5 \cdot 1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot\left((32 \mathrm{~m} / \mathrm{s})^{2}\right)}$

咠
9) Lift Coefficient for Rotating Cylinder with Circulation

包 $\mathrm{C}^{\prime}=\frac{\Gamma_{\mathrm{c}}}{\mathrm{R} \cdot \mathrm{V}_{\infty}}$
Open Calculator
ex $12.55814=\frac{243 \mathrm{~m}^{2} / \mathrm{s}}{0.9 \mathrm{~m} \cdot 21.5 \mathrm{~m} / \mathrm{s}}$
10) Lift Coefficient for Rotating Cylinder with Tangential Speed
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}^{\prime}=\frac{2 \cdot \pi \cdot \mathrm{v}_{\mathrm{t}}}{\mathrm{V}_{\infty}}$
Open Calculator
ex $12.56637=\frac{2 \cdot \pi \cdot 43 \mathrm{~m} / \mathrm{s}}{21.5 \mathrm{~m} / \mathrm{s}}$
11) Lift Force for Body moving in Fluid
$f \mathbf{x}\left(\mathrm{~F}_{\mathrm{L}}{ }^{\prime}\right)=\frac{\mathrm{C}_{\mathrm{L}} \cdot \mathrm{A}_{\mathrm{p}} \cdot \mathrm{M}_{\mathrm{w}} \cdot\left(\mathrm{v}^{2}\right)}{\mathrm{V}_{\mathrm{w}} \cdot 2}$
Open Calculator
ex $1098.693 \mathrm{~N}=\frac{0.94 \cdot 1.88 \mathrm{~m}^{2} \cdot 3.4 \mathrm{~kg} \cdot\left((32 \mathrm{~m} / \mathrm{s})^{2}\right)}{2.8 \mathrm{~m}^{3} \cdot 2}$
12) Lift Force for body moving in Fluid of Certain Density

Open Calculator [
$f \times F_{L}=C_{L} \cdot A_{p} \cdot \rho \cdot \frac{v^{2}}{2}$
ex $1094.816 \mathrm{~N}=0.94 \cdot 1.88 \mathrm{~m}^{2} \cdot 1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot \frac{(32 \mathrm{~m} / \mathrm{s})^{2}}{2}$
13) Lift Force on Cylinder for Circulation
$f \mathrm{x} \quad \mathrm{F}_{\mathrm{L}}=\rho \cdot \mathrm{I} \cdot \Gamma_{\mathrm{c}} \cdot \mathrm{V}_{\infty}$
Open Calculator
ex $53733.98 \mathrm{~N}=1.21 \mathrm{~kg} / \mathrm{m}^{3} \cdot 8.5 \mathrm{~m} \cdot 243 \mathrm{~m}^{2} / \mathrm{s} \cdot 21.5 \mathrm{~m} / \mathrm{s}$
14) Radius of Cylinder for Lift Coefficient in Rotating Cylinder with Circulation
$\mathrm{f} \times \mathrm{R}=\frac{\Gamma_{\mathrm{c}}}{\mathrm{C}^{\prime} \cdot \mathrm{V}_{\infty}}$
Open Calculator
ex $0.900584 \mathrm{~m}=\frac{243 \mathrm{~m}^{2} / \mathrm{s}}{12.55 \cdot 21.5 \mathrm{~m} / \mathrm{s}}$
15) Tangential Velocity of Cylinder with Lift Coefficient
$f \mathrm{x} \mathrm{v}_{\mathrm{t}}=\frac{\mathrm{C}^{\prime} \cdot \mathrm{V}_{\infty}}{2 \cdot \pi}$
Open Calculator
ex $42.94398 \mathrm{~m} / \mathrm{s}=\frac{12.55 \cdot 21.5 \mathrm{~m} / \mathrm{s}}{2 \cdot \pi}$
16) Velocity of Airfoil for Circulation developed on Airfoil
$\mathrm{fx} \mathrm{U}=\frac{\Gamma}{\pi \cdot \mathrm{C} \cdot \sin (\alpha)}$
Open Calculator
ex $81.08576 \mathrm{~m} / \mathrm{s}=\frac{62 \mathrm{~m}^{2} / \mathrm{s}}{\pi \cdot 2.15 \mathrm{~m} \cdot \sin \left(6.5^{\circ}\right)}$

Variables Used

- $\mathbf{A}_{\mathbf{p}}$ Projected Area of Body (Square Meter)
- C Chord Length of Airfoil (Meter)
- C_{L} airfoil Lift Coefficient for Airfoil
- \mathbf{C}_{L} Lift Coefficient for Body in Fluid
- C' Lift Coefficient for Rotating Cylinder
- $F_{\text {L }}$ Lift Force on Rotating Cylinder (Newton)
- \mathbf{F}_{L} 'Lift Force on Body in Fluid (Newton)
- I Length of Cylinder in Fluid Flow (Meter)
- $\mathbf{M}_{\mathbf{w}}$ Mass of Flowing Fluid (Kilogram)
- R Radius of Rotating Cylinder (Meter)
- U Velocity of Airfoil (Meter per Second)
- V Velocity of Body or Fluid (Meter per Second)
- \mathbf{V}_{∞} Freestream Velocity of Fluid (Meter per Second)
- $\mathbf{V}_{\mathbf{t}}$ Tangential Velocity of Cylinder in Fluid (Meter per Second)
- $\mathbf{V}_{\mathbf{w}}$ Volume of Flowing Fluid (Cubic Meter)
- $\boldsymbol{\alpha}$ Angle of Attack on Airfoil (Degree)
- 「 Circulation on Airfoil (Square Meter per Second)
- $\Gamma_{\mathbf{c}}$ Circulation Around Cylinder (Square Meter per Second)
- $\boldsymbol{\theta}$ Angle at Stagnation Point (Degree)
- $\boldsymbol{\rho}$ Density of Fluid Circulating (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Function: sin, $\sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion
- Measurement: Momentum Diffusivity in Square Meter per Second ($\mathrm{m}^{2} / \mathrm{s}$) Momentum Diffusivity Unit Conversion

Check other formula lists

- Lift and Circulation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

