

Drag and Forces Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Drag and Forces Formulas

Drag and Forces

1) Area of body for Lift Force in body moving on Fluid

$$\mathbf{A}_{\mathrm{p}} = rac{\mathbf{F_{L}'}}{\mathbf{C_{L} \cdot 0.5 \cdot \rho \cdot (v^2)}}$$

ex
$$1.888902 m^2 = \frac{1100 N}{0.94 \cdot 0.5 \cdot 1.21 kg/m^3 \cdot \left(\left(32 m/s \right)^2 \right)}$$

2) Coefficient of drag for sphere in Oseen formula when Reynolds number is between 0.2 and 5

$$extbf{C}_{ ext{D}} = \left(rac{24}{ ext{Re}}
ight) \cdot \left(1 + \left(rac{3}{16 \cdot ext{Re}}
ight)
ight)$$

$$\boxed{\textbf{ex} \left[0.0048 = \left(\frac{24}{5000}\right) \cdot \left(1 + \left(\frac{3}{16 \cdot 5000}\right)\right)\right]}$$

3) Coefficient of drag for sphere in stoke's law when Reynolds number is less than 0.2 🖸

$$\mathrm{fx} \left[\mathrm{C_D} = rac{24}{\mathrm{Re}}
ight]$$

4) Drag Force for body moving in Fluid 🗗

$$ag{K} \left(\mathrm{F_D'}
ight) = rac{\left(\mathrm{C_D'}
ight) \cdot \mathrm{A_p} \cdot \mathrm{M_w} \cdot \left(\mathrm{v}
ight)^2}{\mathrm{V_w} \cdot 2}$$

ex
$$175.3234 \mathrm{N} = rac{0.15 \cdot 1.88 \mathrm{m}^2 \cdot 3.4 \mathrm{kg} \cdot (32 \mathrm{m/s})^2}{2.8 \mathrm{m}^3 \cdot 2}$$

5) Drag Force for body moving in Fluid of Certain Density

$$extbf{K}(F_D') = (C_D') \cdot A_p \cdot
ho \cdot rac{v^2}{2}$$

ex
$$174.7046 \mathrm{N} = 0.15 \cdot 1.88 \mathrm{m}^2 \cdot 1.21 \mathrm{kg/m}^3 \cdot \frac{\left(32 \mathrm{m/s}\right)^2}{2}$$

6) Force exerted by body on supersonic plane

$$\mathbf{F} = \left(\rho \cdot \left(\Delta L^2\right) \cdot \left(v^2\right)\right) \cdot \left(\frac{\mu_d}{\rho \cdot v \cdot \Delta L}\right) \cdot \left(\frac{K}{\rho \cdot v^2}\right)$$

Open Calculator

ex

$$\boxed{1269.499 N = \left(1.21 kg/m^3 \cdot \left((3277 m)^2\right) \cdot \left((32 m/s)^2\right)\right) \cdot \left(\frac{0.075 P}{1.21 kg/m^3 \cdot 32 m/s \cdot 3277 m}\right) \cdot \left(\frac{2000 Pa}{1.21 kg/m^3 \cdot (32 m/s)^2}\right)} \cdot \left(\frac{2000 Pa}{1.21 kg/m^3 \cdot (32 m/s)^2}\right) \cdot \left(\frac{1.21 kg}{1.21 kg/m^3}\right) \cdot \left(\frac{2000 Pa}{1.21 kg/m^3}\right) \cdot \left(\frac{1.21 kg}{1.21 kg/m^3}\right) \cdot \left(\frac{1.21 kg}$$

7) Power Required to Keep Flat Plate in Motion

fx
$$P_w = (F_D') \cdot v$$

Open Calculator

 $= 5584W = 174.5N \cdot 32m/s$

8) Pressure Drag from Total Drag Force on Sphere

fx
$$P_d = \pi \cdot \mu_d \cdot D \cdot v$$

Open Calculator

 $\text{ex} \ 0.060319 \text{N} = \pi \cdot 0.075 \text{P} \cdot 0.08 \text{m} \cdot 32 \text{m/s}$

9) Skin Friction Drag from Total Drag Force on Sphere 🖸

$$\mathbf{F}_{ ext{dragforce}} = 2 \cdot \pi \cdot \mu_{ ext{d}} \cdot \mathrm{D} \cdot \mathrm{v}$$

Open Calculator

 \mathbf{ex} 0.120637N = $2 \cdot \pi \cdot 0.075 P \cdot 0.08 m \cdot 32 m/s$

10) Total Drag force on Sphere 🗹

$$\mathbf{F}_{\mathrm{D}} = 3 \cdot \pi \cdot \mu_{\mathrm{d}} \cdot \mathrm{D} \cdot \mathrm{v}$$

Open Calculator

 $= 2.180956 N = 3 \cdot \pi \cdot 0.075 P \cdot 0.08 m \cdot 32 m/s$

11) Total force exerted by fluid on body

$$\mathbf{F} = \left((C_D) \cdot A_p \cdot \mathbf{
ho} \cdot rac{v^2}{2}
ight) + \left(C_L \cdot A_p \cdot \mathbf{
ho} \cdot rac{v^2}{2}
ight)$$

Open Calculator

$$\boxed{ 1269.52 N = \left(0.15 \cdot 1.88 m^2 \cdot 1.21 kg/m^3 \cdot \frac{\left(32 m/s\right)^2}{2} \right) + \left(0.94 \cdot 1.88 m^2 \cdot 1.21 kg/m^3 \cdot \frac{\left(32 m/s\right)^2}{2} \right) }$$

Variables Used

- Ap Projected Area of Body (Square Meter)
- CD Coefficient of Drag for Sphere
- Cp' Coefficient of Drag for Body in Fluid
- C1 Lift Coefficient for Body in Fluid
- D Diameter of Sphere in Fluid (Meter)
- F Force (Newton)
- F_D Total Drag Force on Sphere (Newton)
- F_D' Drag Force on Body in Fluid (Newton)
- Fdragforce Skin Friction Drag on Sphere (Newton)
- F_L' Lift Force on Body in Fluid (Newton)
- K Bulk Modulus (Pascal)
- Mw Mass of Flowing Fluid (Kilogram)
- Pd Pressure Drag Force on Sphere (Newton)
- Pw Power to Keep Plate in Motion (Watt)
- Re Reynolds Number
- V Velocity of Body or Fluid (Meter per Second)
- V_w Volume of Flowing Fluid (Cubic Meter)
- **AL** Length of Aeroplane (Meter)
- µd Dynamic Viscosity of Fluid (Poise)
- p Density of Fluid Circulating (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Volume in Cubic Meter (m³)

 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Pressure in Pascal (Pa)

 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)

 Dynamic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

 Density Unit Conversion

Check other formula lists

Drag and Forces Formulas

• Lift and Circulation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/26/2024 | 8:48:12 AM UTC

Please leave your feedback here...

