

Buoyancy Formulas

Calculators!

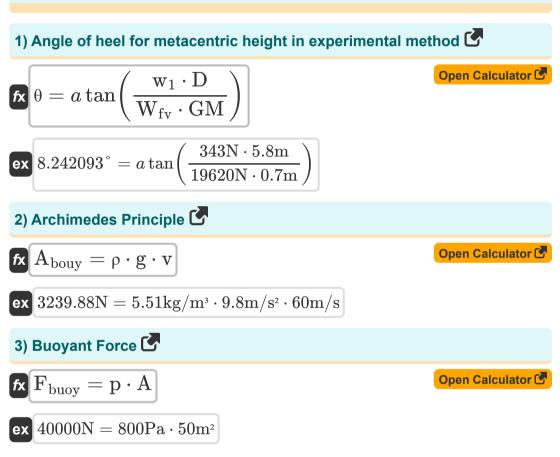
Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!


Please leave your feedback here...

List of 11 Buoyancy Formulas

Buoyancy 🕑

4) Centre of Buoyancy

fx
$$B_c = \frac{d}{2}$$

$$ex 0.525 \mathrm{m} = \frac{1.05 \mathrm{m}}{2}$$

5) Meta-centric height for time period of oscillation and radius of gyration

fx
$$\mathrm{GM}=rac{4\cdot\left(\pi^2
ight)\cdot\left(\mathrm{k}_\mathrm{G}^2
ight)}{\left(\mathrm{T}^2
ight)\cdot\left[\mathrm{g}
ight]}$$

ex
$$0.700361 \mathrm{m} = rac{4 \cdot (\pi^2) \cdot ((8 \mathrm{m})^2)}{((19.18 \mathrm{s})^2) \cdot [\mathrm{g}]}$$

6) Meta-centric height in experimental method 🕑

$$\begin{aligned} \mathbf{fx} \mathbf{GM} &= \left(\frac{\mathbf{w}_1 \cdot \mathbf{D}}{\mathbf{W}_{\mathrm{fv}} \cdot \tan(\theta)}\right) \end{aligned}$$
$$\begin{aligned} \mathbf{ex} \mathbf{0.70018m} &= \left(\frac{343\mathrm{N} \cdot 5.8\mathrm{m}}{19620\mathrm{N} \cdot \tan(8.24^\circ)}\right) \end{aligned}$$

Open Calculator 🕑

© calculatoratoz.com. A softusvista inc. venture!

Open Calculator

Open Calculator

7) Movable weight for metacentric height in experimental method 🕑

$$w_{1} = \frac{GM \cdot W_{fv} \cdot tan(\theta)}{D}$$

$$w_{1} = \frac{GM \cdot W_{fv} \cdot tan(\theta)}{D}$$

$$(x) \quad 342.9117N = \frac{0.7m \cdot 19620N \cdot tan(8.24^{\circ})}{5.8m}$$

$$(x) \quad 8) \text{ Radius of gyration for metacentric height and time period of oscillation}$$

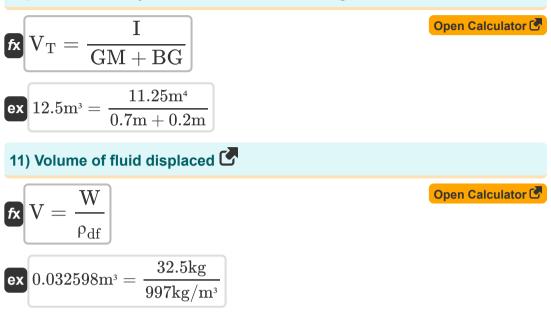
$$(x) \quad k_{G} = \frac{(T) \cdot \sqrt{GM \cdot [g]}}{2 \cdot \pi}$$

$$(x) \quad R = \frac{(19.18s) \cdot \sqrt{0.7m \cdot [g]}}{2 \cdot \pi}$$

9) Time Period of Oscillation of Ship 🕑

 $2 \cdot \pi$

fx
$$\mathbf{T} = (2 \cdot \pi) \cdot \left(\sqrt{\frac{\mathbf{k}_{\mathrm{G}}^2}{\mathrm{GM} \cdot [\mathrm{g}]}} \right)$$


Open Calculator 🕑

$$19.18494s = (2 \cdot \pi) \cdot \left(\sqrt{\frac{(8m)^2}{0.7m \cdot [g]}}\right)$$

10) Volume of body in fluid for metacentric height and BG 🕑

Variables Used

- **A** Area (Square Meter)
- Abouv Archimedes Principle (Newton)
- **B**_c Centre of Buoyancy for Floating Body (*Meter*)
- BG Distance of CG from Center of Buoyancy (Meter)
- d Depth of Immersed Object in Water (Meter)
- D Distance Travelled by Weight on Vessel (Meter)
- Fbuoy Buoyant Force (Newton)
- g Acceleration Due to Gravity (Meter per Square Second)
- GM Metacentric Height of Floating Body (Meter)
- I Moment of Inertia of Plain Floating Body (Meter4)
- **k**_G Radius of Gyration of Floating Body (*Meter*)
- p Pressure (Pascal)
- T Time Period of Oscillation of Floating Body (Second)
- V Velocity (Meter per Second)
- V Volume of Fluid Displaced by Body (Cubic Meter)
- V_T Volume of Body Submerged in Water (Cubic Meter)
- W Weight of Displaced Fluid (Kilogram)
- W1 Movable Weight on Floating Vessel (Newton)
- W_{fv} Weight of Floating Vessel (Newton)
- **θ** Angle of Heel (Degree)
- **p** Density (Kilogram per Cubic Meter)
- Pdf Density of Displaced Fluid (Kilogram per Cubic Meter)

6/9

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³) Volume Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Pressure in Pascal (Pa) Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion
- Measurement: Second Moment of Area in Meter^₄ (m^₄) Second Moment of Area Unit Conversion

Check other formula lists

Buoyancy Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/29/2024 | 6:10:05 AM UTC

Please leave your feedback here ...

