Pelton Turbine Formulas...

Pelton Turbine Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 14 Pelton Turbine Formulas

()

Pelton Turbine Formulas...

12) Tangential Component of Outlet Velocity in Pelton Turbine

$$\begin{aligned} \overleftarrow{\mathbf{x}} \quad & \mathbf{V}_{w} = \mathbf{U} - \mathbf{V}_{r2} \cdot \cos(\beta_{2}) \end{aligned} \qquad & \text{Open Calculator } \overrightarrow{\mathbf{S}} \\ & \underbrace{2.889873m/s = 14.73m/s - 12.6m/s \cdot \cos(20^{\circ})} \\ & \underbrace{13) \text{ Wheel Efficiency of Pelton Turbine } \overrightarrow{\mathbf{S}} \\ & \underbrace{\mathbf{\eta}_{w} = \frac{2 \cdot (1 + k \cdot \cos(\beta_{2})) \cdot (\mathbf{V}_{1} - \mathbf{U}) \cdot \mathbf{U}}{\mathbf{V}_{1}^{2}} \end{aligned} \qquad & \text{Open Calculator } \overrightarrow{\mathbf{S}} \\ & \underbrace{\mathbf{\eta}_{w} = \frac{2 \cdot (1 + 0.95 \cdot \cos(20^{\circ})) \cdot (28m/s - 14.73m/s) \cdot 14.73m/s}{(28m/s)^{2}}} \\ & \underbrace{\mathbf{M}_{w} = \frac{2 \cdot \mathbf{P}_{t}}{\rho \cdot \mathbf{Q}_{p} \cdot \mathbf{V}_{1}^{2}} \end{aligned} \qquad & \text{Open Calculator } \overrightarrow{\mathbf{S}} \\ & \underbrace{\mathbf{M}_{w} = \frac{2 \cdot \mathbf{P}_{t}}{\rho \cdot \mathbf{Q}_{p} \cdot \mathbf{V}_{1}^{2}} \end{aligned} \qquad & \underbrace{\mathbf{M}_{w} = \frac{2 \cdot 553kW}{997kg/m^{3} \cdot 1.5m^{3}/s \cdot (28m/s)^{2}}} \end{aligned}$$

Open Calculator

Variables Used

- Cv Coefficient of Velocity for Pelton
- Em Energy Per Unit Mass of Pelton Turbine (Square Meter per Square Second)
- Ep Energy Per Unit Mass of Pelton (Square Meter per Square Second)
- H Pelton Head (Meter)
- k K Factor for Pelton
- Pt Power of Pelton Turbine (Kilowatt)
- Qp Volume Flow Rate For Pelton Turbine (Cubic Meter per Second)
- U Bucket Velocity of Pelton Turbine (Meter per Second)
- V₁ Velocity of Pelton Jet (Meter per Second)
- V_{r1} Inlet Relative Velocity of Pelton Turbine (Meter per Second)
- Vr2 Outlet Relative Velocity of Pelton (Meter per Second)
- V_{ti} Tangential Inlet Velocity of Pelton (Meter per Second)
- Vw Tangential Outlet Velocity of Pelton (Meter per Second)
- β₂ Outlet Bucket Angle of Pelton (Degree)
- η_w Wheel Efficiency of Pelton Turbine
- p Mass Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Power in Kilowatt (kW) Power Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion
- Measurement: Mass Concentration in Kilogram per Cubic Meter (kg/m³) Mass Concentration Unit Conversion
- Measurement: **Specific Energy** in Square Meter per Square Second (m²/s²) Specific Energy Unit Conversion

6/7

Check other formula lists

• Pelton Turbine Formulas 🖸

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/26/2024 | 7:54:07 AM UTC

Please leave your feedback here...

