Devices with Optical Components Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Devices with Optical Components Formulas

Devices with Optical Components ©

1) Angle of Rotation of Plane of Polarization
$f \mathrm{x} \theta=1.8 \cdot \mathrm{~B} \cdot \mathrm{~L}_{\mathrm{m}}$
ex $19.53 \mathrm{rad}=1.8 \cdot 0.35 \mathrm{~T} \cdot 31 \mathrm{~m}$
2) Apex Angle
$f \mathrm{x} \quad \mathrm{A}=\tan (\alpha)$
ex $8.167315^{\circ}=\tan (-3)$
3) Brewsters Angle
$\mathrm{fx} \theta_{\mathrm{B}}=\arctan \left(\frac{\mathrm{n}_{1}}{\mathrm{n}_{\mathrm{ri}}}\right)$
ex $56.0463^{\circ}=\arctan \left(\frac{1.5}{1.01}\right)$
4) Current Due to Optically Generated Carrier
$f \mathrm{f} \mathrm{i}_{\mathrm{opt}}=\mathrm{q} \cdot \mathrm{A}_{\mathrm{pn}} \cdot \mathrm{g}_{\mathrm{op}} \cdot\left(\mathrm{W}+\mathrm{L}_{\mathrm{dif}}+\mathrm{L}_{\mathrm{p}}\right)$
ex $0.6 \mathrm{~mA}=0.3 \mathrm{C} \cdot 4.8 \mu \mathrm{~m}^{2} \cdot 2.9 \mathrm{e} 13 \cdot(6.79 \mu \mathrm{~m}+5.477816 \mu \mathrm{~m}+2.1 \mu \mathrm{~m})$
5) Diffraction using Fresnel-Kirchoff Formula
$\mathrm{fx}_{\mathrm{dif}}=a \sin \left(1.22 \cdot \frac{\lambda_{\text {vis }}}{\mathrm{D}}\right)$
ex $0.0061 \mathrm{rad}=a \sin \left(1.22 \cdot \frac{500 \mathrm{~nm}}{0.1 \mathrm{~mm}}\right)$
6) Diffusion Coefficient of Electron
fx $\mathrm{D}_{\mathrm{E}}=\mu_{\mathrm{e}} \cdot[$ BoltZ $] \cdot \frac{\mathrm{T}}{[\text { Charge-e }]}$
ex $0.003387 \mathrm{~m}^{2} / \mathrm{s}=1000 \mathrm{~cm}^{2} / \mathrm{V}^{*} \cdot[$ BoltZ $] \cdot \frac{393 \mathrm{~K}}{[\text { Charge-e }]}$
7) Diffusion Length of Transition Region
$f \times L_{\text {dif }}=\frac{i_{\text {opt }}}{q \cdot A_{p n} \cdot g_{o p}}-\left(W+L_{p}\right)$
ex $5.477816 \mu \mathrm{~m}=\frac{0.60 \mathrm{~mA}}{0.3 \mathrm{C} \cdot 4.8 \mu \mathrm{~m}^{2} \cdot 2.9 \mathrm{e} 13}-(6.79 \mu \mathrm{~m}+2.1 \mu \mathrm{~m})$
8) Effective Density of States in Conduction Band
$f \times \mathrm{N}_{\mathrm{eff}}=2 \cdot\left(2 \cdot \pi \cdot \mathrm{~m}_{\mathrm{eff}} \cdot[\text { BoltZ }] \cdot \frac{\mathrm{T}}{[\mathrm{hP}]^{2}}\right)^{\frac{3}{2}}$
ex $3.9 \mathrm{E}^{\wedge} 24=2 \cdot\left(2 \cdot \pi \cdot 0.2 \mathrm{e}-30 \mathrm{~kg} \cdot[\mathrm{BoltZ}] \cdot \frac{393 \mathrm{~K}}{[\mathrm{hP}]^{2}}\right)^{\frac{3}{2}}$
9) Electron Concentration under Unbalanced Condition
$f \mathrm{x} \mathrm{n}_{\mathrm{e}}=\mathrm{n}_{\mathrm{i}} \cdot \exp \left(\frac{\mathrm{F}_{\mathrm{n}}-\mathrm{E}_{\mathrm{i}}}{[\text { BoltZ }] \cdot \mathrm{T}}\right)$
ex 0.339151 electrons $/ \mathrm{m}^{3}=3.6 \mathrm{electrons} / \mathrm{m}^{3} \cdot \exp \left(\frac{3.7 \mathrm{eV}-3.78 \mathrm{eV}}{[\mathrm{BoltZ}] \cdot 393 \mathrm{~K}}\right)$
10) Excitation Energy
$f \mathrm{fx} \mathrm{E}_{\mathrm{exc}}=1.6 \cdot 10^{-19} \cdot 13.6 \cdot\left(\frac{\mathrm{~m}_{\mathrm{eff}}}{[\mathrm{Mass}-\mathrm{e}]}\right) \cdot\left(\frac{1}{[\text { Permitivity-silicon }]^{2}}\right)$
ex $0.021783 \mathrm{eV}=1.6 \cdot 10^{-19} \cdot 13.6 \cdot\left(\frac{0.2 \mathrm{e}-30 \mathrm{~kg}}{[\text { Mass-e }]}\right) \cdot\left(\frac{1}{[\text { Permitivity-silicon }]^{2}}\right)$
11) Fringe Spacing given Apex Angle
$\mathrm{fx} \mathrm{S}_{\mathrm{fri}}=\frac{\lambda_{\text {vis }}}{2 \cdot \tan \left(\alpha_{\mathrm{opto}}\right)}$
ex $1.41782 \mu=\frac{500 \mathrm{~nm}}{2 \cdot \tan \left(10^{\circ}\right)}$
12) Maximum Acceptance Angle of Compound Lens
$\mathrm{fx} \theta_{\mathrm{acc}}=a \sin \left(\mathrm{n}_{1} \cdot \mathrm{R}_{\text {lens }} \cdot \sqrt{\mathrm{A}_{\mathrm{con}}}\right)$
ex $22.02431^{\circ}=a \sin (1.5 \cdot 0.0025 \mathrm{~m} \cdot \sqrt{10000})$
13) Peak Retardation
$\mathrm{fx} \Phi_{\mathrm{m}}=\frac{2 \cdot \pi}{\lambda_{\mathrm{o}}} \cdot \mathrm{r} \cdot \mathrm{n}_{\mathrm{ri}}^{3} \cdot \mathrm{~V}_{\mathrm{m}}$
ex $80.1349 \mathrm{rad}=\frac{2 \cdot \pi}{3.939 \mathrm{~m}} \cdot 23 \mathrm{~m} \cdot(1.01)^{3} \cdot 2.12 \mathrm{~V}$
14) PN Junction Capacitance
fx
$\mathrm{C}_{\mathrm{j}}=\frac{\mathrm{A}_{\mathrm{pn}}}{2} \cdot \sqrt{\frac{2 \cdot[\text { Charge-e }] \cdot \varepsilon_{\mathrm{r}} \cdot[\text { Permitivity-silicon }]}{\mathrm{V}_{0}-(\mathrm{V})} \cdot\left(\frac{\mathrm{N}_{\mathrm{A}} \cdot \mathrm{N}_{\mathrm{D}}}{\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{D}}}\right)}$
$1.9 \mathrm{E}^{\wedge} 6 \mathrm{fF}=\frac{4.8 \mu \mathrm{~m}^{2}}{2} \cdot \sqrt{\frac{2 \cdot[\text { Charge-e }] \cdot 78 \mathrm{~F} / \mathrm{m} \cdot[\text { Permitivity-silicon }]}{0.6 \mathrm{~V}-(-4 \mathrm{~V})} \cdot\left(\frac{1 \mathrm{e}+22 / \mathrm{m}^{3} \cdot 1 \mathrm{e}+24 / \mathrm{m}^{3}}{1 \mathrm{e}+22 / \mathrm{m}^{3}+1 \mathrm{e}+24 / \mathrm{m}^{3}}\right)}$

Variables Used

- A Apex Angle (Degree)
- $\mathbf{A}_{\text {con }}$ Positive Constant
- $\mathbf{A}_{\text {pn }}$ PN Junction Area (Square Micrometer)
- B Magnetic Flux Density (Tesla)
- $\mathbf{C}_{\mathbf{j}}$ Junction Capacitance (Femtofarad)
- D Diameter of Aperture (Millimeter)
- \mathbf{D}_{E} Electron Diffusion Coefficient (Square Meter Per Second)
- Eexc Excitation Energy (Electron-Volt)
- $\mathbf{E}_{\mathbf{i}}$ Intrinsic Energy Level of Semiconductor (Electron-Volt)
- F_{n} Quasi Fermi Level of Electrons (Electron-Volt)
- $g_{o p}$ Optical Generation Rate
- I
- $\mathrm{L}_{\mathrm{dif}}$ Diffusion Length of Transition Region (Micrometer)
- \mathbf{L}_{m} Length of Medium (Meter)
- \mathbf{L}_{p} Length of P-Side Junction (Micrometer)
- $\mathbf{m}_{\text {eff }}$ Effective Mass of Electron (Kilogram)
- $\mathbf{n}_{\mathbf{1}}$ Refractive Index of Medium 1
- $\mathbf{N}_{\mathbf{A}}$ Acceptor Concentration (1 per Cubic Meter)
- $\mathbf{N}_{\mathbf{D}}$ Donor Concentration (1 per Cubic Meter)
- $\mathbf{n}_{\mathbf{e}}$ Electron Concentration (Electrons per Cubic Meter)
- $\mathbf{N}_{\text {eff }}$ Effective Density of States
- $\mathbf{n}_{\mathbf{i}}$ Intrinsic Electron Concentration (Electrons per Cubic Meter)
- $\mathbf{n}_{\mathbf{r i}}$ Refractive Index
- \mathbf{q} Charge (Coulomb)
- r Length of Fiber (Meter)
- $\mathbf{R}_{\text {lens }}$ Radius of Lens (Meter)
- $\mathrm{S}_{\text {fri }}$ Fringe Space (Micron)
- T Absolute Temperature (Kelvin)
- V Reverse Bias Voltage (Volt)
- $\mathbf{V}_{\mathbf{0}}$ Voltage Across PN Junction (Volt)
- \mathbf{V}_{m} Modulation Voltage (Volt)
- W Transition Width (Micrometer)
- α Alpha
- $\boldsymbol{\alpha}_{\text {opto }}$ Angle of Interference (Degree)
- ε_{r} Relative Permittivity (Farad per Meter)
- $\boldsymbol{\theta}$ Angle of Rotation (Radian)
- $\boldsymbol{\theta}_{\text {acc }}$ Acceptance Angle (Degree)
- $\boldsymbol{\theta}_{\mathrm{B}}$ Brewster's Angle (Degree)
- $\boldsymbol{\theta}_{\text {dif }}$ Diffraction Angle (Radian)
- $\boldsymbol{\lambda}_{\mathbf{o}}$ Wavelength of Light (Meter)
- $\boldsymbol{\lambda}_{\text {vis }}$ Wavelength of Visible Light (Nanometer)
- $\mu_{\mathbf{e}}$ Mobility of Electron (Square Centimeter per Volt Second)
- Φ_{m} Peak Retardation (Radian)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [BoltZ], 1.38064852E-23

Boltzmann constant

- Constant: [Charge-e], 1.60217662E-19

Charge of electron

- Constant: [Mass-e], 9.10938356E-31

Mass of electron

- Constant: [Permitivity-silicon], 11.7

Permittivity of silicon

- Constant: [hP], 6.626070040E-34

Planck constant

- Function: arctan, arctan(Number)

Inverse trigonometric functions are usually accompanied by the prefix - arc. Mathematically, we represent arctan or the inverse tangent function as tan-1 x or $\arctan (x)$.

- Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Function: ctan, ctan(Angle)

Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.

- Function: exp, exp(Number)
n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: $\boldsymbol{\operatorname { t a n }}, \tan ($ Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m), Micrometer ($\mu \mathrm{m}$), Nanometer (nm), Millimeter (mm), Micron (μ) Length Unit Conversion
- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Electric Current in Milliampere (mA) Electric Current Unit Conversion
- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Area in Square Micrometer ($\mu \mathrm{m}^{2}$) Area Unit Conversion
- Measurement: Energy in Electron-Volt (eV)

Energy Unit Conversion U

- Measurement: Electric Charge in Coulomb (C) Electric Charge Unit Conversion
- Measurement: Angle in Radian (rad), Degree (${ }^{\circ}$) Angle Unit Conversion
- Measurement: Capacitance in Femtofarad (fF) Capacitance Unit Conversion
- Measurement: Magnetic Flux Density in Tesla (T) Magnetic Flux Density Unit Conversion
- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

- Measurement: Diffusivity in Square Meter Per Second ($\mathrm{m}^{2} / \mathrm{s}$) Diffusivity Unit Conversion
- Measurement: Mobility in Square Centimeter per Volt Second $\left(\mathrm{cm}^{2} / \mathrm{V}^{*} \mathrm{~s}\right)$ Mobility Unit Conversion
- Measurement: Carrier Concentration in 1 per Cubic Meter ($1 / \mathrm{m}^{3}$) Carrier Concentration Unit Conversion
- Measurement: Permittivity in Farad per Meter (F/m)

Permittivity Unit Conversion

- Measurement: Electron Density in Electrons per Cubic Meter (electrons/m³) Electron Density Unit Conversion

Check other formula lists

- Devices with Optical Components Formulas P Photonics Devices Formulas
- Lasers Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

