

Basics of Image Processing Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Basics of Image Processing Formulas

12) Probability of Intensity Level Occurring in given Image 🖸

fx
$$P_{ZK} = \frac{N_k}{n}$$

ex $0.075 = \frac{3}{40 \mathrm{px}}$

13) Quantization Step Size in Image Processing 🗹

fx
$$\Delta_{ ext{b}} = \left(2^{ ext{R}_{ ext{b}}-arepsilon_{ ext{b}}}
ight)\cdot \left(1+rac{\mu_{ ext{b}}}{2^{11}}
ight)$$

ex $443.1024 \mathrm{kW/m^2} = \left(2^{21\mathrm{dB}-2.245}
ight)\cdot \left(1+rac{3.24}{2^{11}}
ight)$

14) Rejection of Image Frequency

fx
$$ext{CSP} = \left(1 + ext{Q}^2 \cdot
ho^2
ight)^{0.5}$$

ex
$$300.0017 = \left(1 + (20)^2 \cdot (15)^2\right)^{0.5}$$

15) Run-Length Entropy of Image 🕑

fx $\mathbf{H}_{\mathrm{RL}} = rac{\mathrm{H}_0 + \mathrm{H}_1}{\mathrm{L}_0 + \mathrm{L}_1}$

$$= \frac{0.25 \text{J/K} + 2.45 \text{J/K}}{30 \text{px} + 31 \text{px}}$$

Open Calculator

Open Calculator

Open Calculator 🕑

Open Calculator

16) Standard Deviation by Linear Function of Camera Exposure Time

$$\sum \Sigma = \zeta \cdot (\mathbf{I}_{p}) \cdot \delta \cdot \left(\frac{1}{d^{2}}\right) \cdot (\tau_{1} \cdot \mathbf{t} + \tau_{2})$$

$$(3.15 \cdot 6\mu s + 2.75)$$

$$(3.15 \cdot 6\mu s + 2.75)$$

17) Wavelet Coefficient 🕑

fx
$$(\mathrm{d_j}[\mathrm{k}]) = \int igl((\mathrm{f_s}[\mathrm{x}]) \cdot igl(\psi_{-\mathrm{j},\mathrm{k}}[\mathrm{x}] igr) \cdot x, x, 0, \mathrm{k} igr)$$

Open Calculator 🕑

ex
$$160 = \int (2.5 \cdot 8 \cdot x, x, 0, 4)$$

Variables Used

- A Coefficient a
- a_{kp} Eigen Band k Component P
- B Coefficient b
- **B**_d Bit Depth (Bit)
- C Coefficient c
- CSP Customer Selling Price
- d Distance between Camera and the IRED (Centimeter)
- D Coefficient d
- d_i[k] Detail Wavelet Coefficient
- E Energy of Component (Electron-Volt)
- **f** Frequency (Terahertz)
- **f_s[x]** Scaling Function Expansion
- f[BV_i] Frequency of Occurrence of Each Brightness Value
- **f[x]** Linear Combination of Expansion Functions
- H₀ Entropy Black Run Length (Joule per Kelvin)
- H₁ Entropy of White Run Length (Joule per Kelvin)
- H_{RL} Run Length Entropy Image (Joule per Kelvin)
- Ip Radiant Intensity (Milliampere)
- k Integer Index for Linear Expansion
- K_i Cumulative Frequency for Each Brightness
- L Grey Level Image
- L₀ Average Black Run Length (Pixel)

- L1 Average White Run Length (Pixel)
- M Digital Image Row
- **n** Total Number of Pixels (Pixel)
- N Digital Image Column
- n_b Number of Bits
- Nk Intensity Occurs in Image
- Nmax Maximum Brightness Value (Watt per Square Meter)
- PZK Probability of Intensity
- Q Quality Factor Image
- R_b Nominal Dynamic Range (Decibel)
- **R**_i Image Resolution (Pixel)
- R_{kp} K Band Loads with P Principle Components
- S_i Image File Size (Bit)
- t Camera Exposure Time (Microsecond)
- V Reference Voltage Image (Volt)
- V_r Digital to Analog Converter Resolution (Volt)
- V_{X.V} Bilinear Interpolation
- Vark Band Variance Matrix
- X X Co-ordinate
- Y Y Co-ordinate
- α_k Real Valued Expansion Coefficients
- δ Model Behaviour Function
- Δ_b Quantization Step Size (Kilowatt per Square Meter)
- ε_b Bits Allotted Exponent Number

- ζ Model Function
- λ_p Pth Eigenvalue
- µb Bits Allotted to Mantissa Number
- p Rejection Constant Image
- Σ Standard Deviation
- T1 Model Coefficient 1
- T₂ Model Coefficient 2
- φ[x] Real Valued Expansion Functions
- ψ_{i,k}[x] Wavelet Expansion Function

Constants, Functions, Measurements used

- Constant: [hP], 6.626070040E-34 *Planck constant*
- Function: int, int(expr, arg, from, to) The definite integral can be used to calculate net signed area, which is the area above the x -axis minus the area below the x -axis.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: sum, sum(i, from, to, expr)
 Summation or sigma (∑) notation is a method used to write out a long sum in a concise way.
- Measurement: Length in Centimeter (cm) Length Unit Conversion
- Measurement: Time in Microsecond (μs)
 Time Unit Conversion
- Measurement: Electric Current in Milliampere (mA) Electric Current Unit Conversion
- Measurement: Energy in Electron-Volt (eV) Energy Unit Conversion
- Measurement: Frequency in Terahertz (THz)
 Frequency Unit Conversion
- Measurement: Data Storage in Bit (bits)
 Data Storage Unit Conversion
- Measurement: Electric Potential in Volt (V) Electric Potential Unit Conversion

- Measurement: Sound in Decibel (dB) Sound Unit Conversion
- Measurement: Resolution in Pixel (px) Resolution Unit Conversion
- Measurement: Entropy in Joule per Kelvin (J/K) Entropy Unit Conversion
- Measurement: Intensity in Watt per Square Meter (W/m²), Kilowatt per Square Meter (kW/m²) Intensity Unit Conversion

Check other formula lists

Basics of Image Processing
Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/26/2024 | 5:38:22 AM UTC

Please leave your feedback here ...

