

Motion in Bodies Hanging by String Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - **30,000+ Calculators!** Calculate With a Different Unit for Each Variable - **In built Unit Conversion!** Widest Collection of Measurements and Units - **250+ Measurements!**

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Motion in Bodies Hanging by String Formulas

Motion in Bodies Hanging by String C

Body Lying on Rough Horizontal Plane 🕑

1) Acceleration of System with Bodies One Hanging Free and Other Lying on Rough Horizontal Plane

fx
$$\mathbf{a}_{\mathrm{s}} = rac{\mathrm{m}_1 - \mathrm{\mu}_{\mathrm{hs}} \cdot \mathrm{m}_2}{\mathrm{m}_1 + \mathrm{m}_2} \cdot [\mathrm{g}]$$

ex
$$5.940081 \mathrm{m/s^2} = rac{29 \mathrm{kg} - 0.24 \cdot 13.52 \mathrm{kg}}{29 \mathrm{kg} + 13.52 \mathrm{kg}} \cdot \mathrm{[g]}$$

2) Tension in String given Coefficient of Friction of Horizontal Plane

fx
$$\mathbf{T}_{\mathrm{st}} = (1+\mu_{\mathrm{hor}}) \cdot rac{\mathbf{m}_1 \cdot \mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2} \cdot [\mathbf{g}]$$

ex
$$130.0352$$
N = $(1 + 0.438) \cdot \frac{29$ kg $\cdot 13.52$ kg $\cdot [g]$
 29 kg $+ 13.52$ kg $\cdot [g]$

Open Calculator

Open Calculator

Body Lying on Rough Inclined Plane 🕑

3) Acceleration of System with Bodies One Hanging Free, Other Lying on Rough Inclined Plane

$$\begin{aligned} \mathbf{\widehat{x}} & \mathbf{a}_{i} = \frac{\mathbf{m}_{1} - \mathbf{m}_{2} \cdot \sin\left(\theta_{p}\right) - \mu_{hs} \cdot \mathbf{m}_{2} \cdot \cos\left(\theta_{p}\right)}{\mathbf{m}_{1} + \mathbf{m}_{2}} \cdot [\mathbf{g}] \end{aligned}$$
 Open Calculator (*)

$$\begin{aligned} \mathbf{\widehat{x}} & \mathbf{a}_{i} = \frac{\mathbf{m}_{1} - \mathbf{m}_{2} \cdot \sin\left(13.23^{\circ}\right) - 0.24 \cdot 13.52 \mathrm{kg} \cdot \cos\left(13.23^{\circ}\right)}{29 \mathrm{kg} + 13.52 \mathrm{kg}} \cdot [\mathbf{g}] \end{aligned}$$

$$\begin{aligned} \mathbf{\widehat{x}} & \mathbf{\widehat{x}} & \mathbf{\widehat{x}} \\ \mathbf{\widehat{x}} & \mathbf{\widehat{\mu}}_{hs} = \frac{\mathbf{F}_{fri}}{\mathbf{m}_{2} \cdot [\mathbf{g}] \cdot \cos\left(\theta_{p}\right)} \end{aligned}$$
 Open Calculator (*)

$$\begin{aligned} \mathbf{\widehat{x}} & \mu_{hs} = \frac{\mathbf{F}_{fri}}{\mathbf{m}_{2} \cdot [\mathbf{g}] \cdot \cos\left(\theta_{p}\right)} \end{aligned}$$

$$\begin{aligned} \mathbf{\widehat{x}} & \mathbf{\widehat{x}} \\ \mathbf{\widehat{x}} \\ \mathbf{\widehat{x}} & \mathbf{\widehat{x}} \\ \mathbf{\widehat{x}} \\$$

6) Frictional Force
$$\mathbf{C}$$

(a) $F_{fri} = \mu_{hs} \cdot m_2 \cdot [g] \cdot \cos(\theta_p)$ Open Calculator (*)
(c) $30.97607N = 0.24 \cdot 13.52kg \cdot [g] \cdot \cos(13.23^{\circ})$
7) Inclination of Plane for given Frictional Force (*)
(a) $\theta_p = a \cos\left(\frac{F_{fri}}{\mu_{hs} \cdot m_2 \cdot [g]}\right)$ Open Calculator (*)
(b) $\theta_p = a \cos\left(\frac{30.97607N}{0.24 \cdot 13.52kg \cdot [g]}\right)$
8) Mass of Body B given Frictional Force (*)
(a) $m_2 = \frac{F_{fri}}{\mu_{hs} \cdot [g] \cdot \cos(\theta_p)}$ Open Calculator (*)
(b) $m_2 = \frac{F_{fri}}{\mu_{hs} \cdot [g] \cdot \cos(\theta_p)}$
(c) $m_2 = \frac{30.97607N}{0.24 \cdot [g] \cdot \cos(13.23^{\circ})}$
9) Tension in String given Coefficient of Friction of Inclined Plane (*)
(b) $T_{st} = \frac{m_1 \cdot m_2}{m_1 + m_2} \cdot [g] \cdot (1 + \sin(\theta_p) + \mu_{hs} \cdot \cos(\theta_p))$ Open Calculator (*)
(*) $13.22499N = \frac{29kg \cdot 13.52kg}{29kg + 13.52kg} \cdot [g] \cdot (1 + \sin(13.23^{\circ}) + 0.24 \cdot \cos(13.23^{\circ}))$

()

Body Lying on Smooth Horizontal Plane 🕑

10) Acceleration in System 🕑

$$\begin{aligned} & \mathbf{\hat{fx}} \ \mathbf{\hat{a}_b} = \frac{m_1}{m_1 + m_2} \cdot [\mathbf{g}] \\ & \mathbf{ex} \ 6.688449 \mathrm{m/s^2} = \frac{29 \mathrm{kg}}{29 \mathrm{kg} + 13.52 \mathrm{kg}} \cdot [\mathbf{g}] \\ & \mathbf{11) Tension in String if only One Body is Freely Suspended } \\ & \mathbf{\hat{fx}} \ \mathbf{T}_{\mathrm{fs}} = \frac{m_1 \cdot m_2}{m_1 + m_2} \cdot [\mathbf{g}] \end{aligned}$$

ex
$$90.42783 \mathrm{N} = rac{29 \mathrm{kg} \cdot 13.52 \mathrm{kg}}{29 \mathrm{kg} + 13.52 \mathrm{kg}} \cdot \mathrm{[g]}$$

Body Lying on Smooth Inclined Plane C

12) Acceleration of System with Bodies One Hanging Free and Other Lying on Smooth Inclined Plane

13) Angle of Inclination given Acceleration \mathbf{C} $\theta_{p} = a \sin\left(\frac{m_{1} \cdot [g] - m_{1} \cdot a_{s} - m_{2} \cdot a_{s}}{m_{2} \cdot [g]}\right)$

ex
$$13.88807^{\circ} = a \sin\left(\frac{29 \text{kg} \cdot [\text{g}] - 29 \text{kg} \cdot 5.94 \text{m/s}^2 - 13.52 \text{kg} \cdot 5.94 \text{m/s}^2}{13.52 \text{kg} \cdot [\text{g}]}
ight)$$

14) Angle of Inclination given Tension

$$\mathbf{fx} \theta_{p} = a \sin\left(\frac{T \cdot (m_{1} + m_{2})}{m_{1} \cdot m_{2} \cdot [g]} - 1\right)$$

ex $13.23^{\circ} = a \sin\left(\frac{111.1232N \cdot (29kg + 13.52kg)}{29kg \cdot 13.52kg \cdot [g]} - 1\right)$

15) Tension in String when One Body is Lying on Smooth Inclined Plane

fx
$$T = rac{\mathrm{m_1} \cdot \mathrm{m_2}}{\mathrm{m_1} + \mathrm{m_2}} \cdot [\mathrm{g}] \cdot \left(1 + \mathrm{sin}(\theta_\mathrm{p})\right)$$

ex
$$111.1232N = rac{29 \mathrm{kg} \cdot 13.52 \mathrm{kg}}{29 \mathrm{kg} + 13.52 \mathrm{kg}} \cdot \mathrm{[g]} \cdot (1 + \mathrm{sin}(13.23^\circ))$$

Open Calculator

Open Calculator

Open Calculator

Variables Used

- **a**b Acceleration of System (Meter per Square Second)
- **a_i** Acceleration of System in Inclined Plane (Meter per Square Second)
- **a_s** Acceleration of Body (Meter per Square Second)
- F_{fri} Force of Friction (Newton)
- **m₁** Mass of Left Body (*Kilogram*)
- m₂ Mass of Right Body (Kilogram)
- **T** Tension (Newton)
- T_{fs} Tension in Freely Suspended String (Newton)
- T_{st} Tension in String (Newton)
- θ_b Inclination of body (Degree)
- θ_p Inclination of Plane (Degree)
- µhor Coefficient of Friction for Horizontal Plane
- µhs Coefficient of Friction for Hanging String

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: acos, acos(Number) The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Function: **asin**, asin(Number) The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sec, sec(Angle) Secant is a trigonometric function that is defined ratio of the hypotenuse to the shorter side adjacent to an acute angle (in a right-angled triangle); the reciprocal of a cosine.
- Function: **sin**, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion

Check other formula lists

Motion in Bodies Hanging by String
 Projectile Motion Formulas
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/9/2024 | 7:31:11 AM UTC

Please leave your feedback here ...

