Electromagnetic Radiation and Antennas Formulas

List of 13 Electromagnetic Radiation and Antennas Formulas

Electromagnetic Radiation and Antennas ®

1) Average Power
$f \mathbf{x} P_{r}=\frac{1}{2} \cdot i_{o}^{2} \cdot R_{r a d}$
ex $67.8375 \mathrm{~W}=\frac{1}{2} \cdot(4.5 \mathrm{~A})^{2} \cdot 6.7 \Omega$
2) Average Power Density of Half-Wave Dipole

$$
[\operatorname{Pr}]_{\mathrm{avg}}=\frac{0.609 \cdot \eta_{\mathrm{hwd}} \cdot \mathrm{I}_{\mathrm{o}}^{2}}{4 \cdot \pi^{2} \cdot \mathrm{r}_{\mathrm{hwd}}^{2}} \cdot \sin \left(\left(\left(\left(\mathrm{~W}_{\mathrm{hwd}} \cdot \mathrm{t}\right)-\left(\frac{\pi}{\mathrm{L}_{\mathrm{hwd}}}\right) \cdot \mathrm{r}_{\mathrm{hwd}}\right)\right) \cdot \frac{\pi}{180}\right)^{2}
$$

ex
$73.23764 \mathrm{~W} / \mathrm{m}^{3}=\frac{0.609 \cdot 377 \Omega \cdot(5 \mathrm{~A})^{2}}{4 \cdot \pi^{2} \cdot(0.5 \mathrm{~m})^{2}} \cdot \sin \left(\left(\left((6.28 \mathrm{e} 7 \mathrm{rad} / \mathrm{s} \cdot 0.001 \mathrm{~s})-\left(\frac{\pi}{2 \mathrm{~m}}\right) \cdot 0.5 \mathrm{~m}\right)\right) \cdot \frac{\pi}{180}\right)^{2}$
3) Directivity of Half-Wave Dipole
fx
$\mathrm{D}_{\mathrm{hwd}}=\frac{[\mathrm{P}]_{\max }}{[\mathrm{Pr}]_{\mathrm{avg}}}$
ex $1.642053=\frac{120.26 \mathrm{~W} / \mathrm{m}^{3}}{73.2376092 \mathrm{~W} / \mathrm{m}^{3}}$
4) Electric Field for Hertzian Dipole
$f \mathrm{fx} \mathrm{E}_{\Phi}=\eta \cdot \mathrm{H}_{\Phi}$
ex $0.062961 \mathrm{~V} / \mathrm{m}=9.3 \Omega \cdot 6.77 \mathrm{~mA} / \mathrm{m}$
5) Magnetic Field for Hertzian Dipole
$f_{*} H_{\Phi}=\left(\frac{1}{r}\right)^{2} \cdot\left(\cos \left(2 \cdot \pi \cdot \frac{r}{\lambda}\right)+2 \cdot \pi \cdot \frac{r}{\lambda} \cdot \sin \left(2 \cdot \pi \cdot \frac{r}{\lambda}\right)\right)$
Open Calculator
ex $6.773038 \mathrm{~mA} / \mathrm{m}=\left(\frac{1}{8.3 \mathrm{~m}}\right)^{2} \cdot\left(\cos \left(2 \cdot \pi \cdot \frac{8.3 \mathrm{~m}}{20 \mathrm{~m}}\right)+2 \cdot \pi \cdot \frac{8.3 \mathrm{~m}}{20 \mathrm{~m}} \cdot \sin \left(2 \cdot \pi \cdot \frac{8.3 \mathrm{~m}}{20 \mathrm{~m}}\right)\right)$
6) Maximum Power Density of Half-Wave Dipole $\boxed{\boxed{ } 1}$
fx
Open Calculator
$[\mathrm{P}]_{\max }=\frac{\eta_{\mathrm{hwd}} \cdot \mathrm{I}_{\mathrm{o}}^{2}}{4 \cdot \pi^{2} \cdot \mathrm{r}_{\mathrm{hwd}}^{2}} \cdot \sin \left(\left(\left(\left(\mathrm{~W}_{\mathrm{hwd}} \cdot \mathrm{t}\right)-\left(\frac{\pi}{\mathrm{L}_{\mathrm{hwd}}}\right) \cdot \mathrm{r}_{\mathrm{hwd}}\right)\right) \cdot \frac{\pi}{180}\right)^{2}$
ex $120.2588 \mathrm{~W} / \mathrm{m}^{3}=\frac{377 \Omega \cdot(5 \mathrm{~A})^{2}}{4 \cdot \pi^{2} \cdot(0.5 \mathrm{~m})^{2}} \cdot \sin \left(\left(\left((6.28 \mathrm{e} 7 \mathrm{rad} / \mathrm{s} \cdot 0.001 \mathrm{~s})-\left(\frac{\pi}{2 \mathrm{~m}}\right) \cdot 0.5 \mathrm{~m}\right)\right) \cdot \frac{\pi}{180}\right)^{2}$
7) Polarization
$f x \mathrm{P}=\mathrm{X}_{\mathrm{e}} \cdot[$ Permitivity-vacuum $] \cdot \mathrm{E}$
ex $0.02124 \mathrm{C}^{*} \mathrm{~cm}^{2} / \mathrm{V}=800 \cdot[$ Permitivity-vacuum $] \cdot 300 \mathrm{~V} / \mathrm{m}$
8) Power Radiated by Half-Wave Dipole
$f x$
$\mathrm{p}_{\mathrm{rad}}=\left(\frac{0.609 \cdot \eta_{\mathrm{hwd}} \cdot\left(\mathrm{I}_{\mathrm{o}}\right)^{2}}{\pi}\right) \cdot \sin \left(\left(\left(\mathrm{W}_{\mathrm{hwd}} \cdot \mathrm{t}\right)-\left(\left(\frac{\pi}{\mathrm{L}_{\mathrm{hwd}}}\right) \cdot \mathrm{r}_{\mathrm{hwd}}\right)\right) \cdot \frac{\pi}{180}\right)^{2}$
ex
$230.0828 \mathrm{~W}=\left(\frac{0.609 \cdot 377 \Omega \cdot(5 \mathrm{~A})^{2}}{\pi}\right) \cdot \sin \left(\left((6.28 \mathrm{e} 7 \mathrm{rad} / \mathrm{s} \cdot 0.001 \mathrm{~s})-\left(\left(\frac{\pi}{2 \mathrm{~m}}\right) \cdot 0.5 \mathrm{~m}\right)\right) \cdot \frac{\pi}{180}\right)^{2}$
9) Poynting Vector Magnitude \leftrightarrows
$f x S_{r}=\frac{1}{2} \cdot\left(\frac{I_{d} \cdot k \cdot d}{4 \cdot \pi}\right)^{2} \cdot \eta \cdot(\sin (\theta))^{2}$
ex $12.43729 \mathrm{~kW} / \mathrm{m}^{2}=\frac{1}{2} \cdot\left(\frac{23.4 \mathrm{~A} \cdot 5.1 \cdot 6.4 \mathrm{~m}}{4 \cdot \pi}\right)^{2} \cdot 9.3 \Omega \cdot(\sin (45 \mathrm{rad}))^{2}$
10) Radiation Efficiency of Antenna

ex $3.03125=\frac{9.7}{3.2}$
11) Radiation Resistance of Antenna
$f x R_{\mathrm{rad}}=2 \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{i}_{\mathrm{o}}^{2}}$
ex $6.306173 \Omega=2 \cdot \frac{63.85 \mathrm{~W}}{(4.5 \mathrm{~A})^{2}}$
12) Radiation Resistance of Half-Wave Dipole
$f \mathrm{x} \mathrm{R}_{\mathrm{hwd}}=\frac{0.609 \cdot \eta_{\mathrm{hwd}}}{\pi}$
ex $73.08172 \Omega=\frac{0.609 \cdot 377 \Omega}{\pi}$
13) Time Average Radiated Power of Half-Wave Dipole
$\mathrm{fx}_{\mathrm{x}}\left(<\mathrm{P}_{\mathrm{rad}}>\right)=\left(\frac{\left(\mathrm{I}_{\mathrm{o}}\right)^{2}}{2}\right) \cdot\left(\frac{0.609 \cdot \eta_{\mathrm{hwd}}}{\pi}\right)$
$\mathrm{ex} 913.5215 \mathrm{~W}=\left(\frac{(5 \mathrm{~A})^{2}}{2}\right) \cdot\left(\frac{0.609 \cdot 377 \Omega}{\pi}\right)$

Variables Used

- $[P]_{\text {max }}$ Maximum Power Density (Watt Per Cubic Meter)
- [Pr] avg Average Power Density (Watt Per Cubic Meter)
- < $\mathbf{P}_{\text {rad }}>$ Time Average Radiated Power (Watt)
- d Source Distance (Meter)
- $\mathbf{D}_{\text {hwd }}$ Directivity of Half Wave Dipole
- $\mathbf{D}_{\text {max }}$ Maximum Directivity
- E Electric Field Strength (Volt per Meter)
- \mathbf{E}_{Φ} Electric Field Component (Volt per Meter)
- G Maximum Gain
- \mathbf{H}_{Φ} Magnetic Field Component (Milliampere per Meter)
- $I_{\mathbf{d}}$ Dipole Current (Ampere)
- $\mathbf{i}_{\mathbf{0}}$ Sinusoidal Current (Ampere)
- $\mathbf{I}_{\mathbf{O}}$ Amplitude of Oscillating Current (Ampere)
- k Wavenumber
- Lhwd Length of Antenna (Meter)
- P Polarization (Coulomb Square Centimeter per Volt)
- $\mathbf{P}_{\mathbf{r}}$ Average Power (Watt)
- Prad Power Radiated by Half-wave Dipole (Watt)
- r Dipole Distance (Meter)
- $\mathbf{r}_{\text {hwd }}$ Radial Distance from Antenna (Meter)
- $\mathbf{R}_{\text {hwd }}$ Radiation Resistance of Half-wave Dipole (Ohm)
- $\mathbf{R}_{\text {rad }}$ Radiation Resistance (Ohm)
- $\mathbf{S}_{\mathbf{r}}$ Poynting Vector (Kilowatt per Square Meter)
- t Time (Second)
- Whwd Angular Frequency of Half Wave Dipole (Radian per Second)
- $\boldsymbol{\eta}$ Intrinsic Impedance (Ohm)
- $\eta_{\text {hwd }}$ Intrinsic Impedance of Medium (Ohm)
- η_{r} Radiation Efficiency of Antenna
- $\boldsymbol{\theta}$ Polar Angle (Radian)
- $\boldsymbol{\lambda}$ Dipole Wavelength (Meter)
- $\mathbf{X e}_{\mathbf{e}}$ Electric Susceptibility

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [Permitivity-vacuum], 8.85E-12

Permittivity of vacuum

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: $\boldsymbol{\operatorname { s i n }}, \boldsymbol{\operatorname { s i n }}$ (Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Angle in Radian (rad)

Angle Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Wavelength in Meter (m)

Wavelength Unit Conversion

- Measurement: Linear Current Density in Milliampere per Meter (mA / m)

Linear Current Density Unit Conversion

- Measurement: Electric Field Strength in Volt per Meter (V/m)

Electric Field Strength Unit Conversion

- Measurement: Heat Flux Density in Kilowatt per Square Meter (kW/m²) Heat Flux Density Unit Conversion
- Measurement: Power Density in Watt Per Cubic Meter (W/m³) Power Density Unit Conversion
- Measurement: Polarizability in Coulomb Square Centimeter per Volt ($\mathrm{C}^{*} \mathrm{~cm}^{2} / \mathrm{V}$) Polarizability Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s)

Angular Frequency Unit Conversion

Check other formula lists

- Electromagnetic Radiation and Antennas

Formulas

Feel free to SHARE this document with your friends!

PDF Available in
English Spanish French German Russian Italian Portuguese Polish Dutch

