

Electromagnetic Radiation and Antennas Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Electromagnetic Radiation and Antennas Formulas

Electromagnetic Radiation and Antennas &

1) Average Power

$$P_{
m r} = rac{1}{2} \cdot {
m i}_{
m o}^2 \cdot {
m R}_{
m rad}$$

Open Calculator

Open Calculator

$$\mathbf{ex} = 67.8375$$
 $\mathbf{W} = \frac{1}{2} \cdot (4.5$ $\mathbf{A})^2 \cdot 6.7$ $\mathbf{\Omega}$

2) Average Power Density of Half-Wave Dipole

Lipole Li

$$\left[\mathrm{Pr} \right]_{avg} = \frac{0.609 \cdot \eta_{hwd} \cdot I_o^2}{4 \cdot \pi^2 \cdot r_{hwd}^2} \cdot \sin \biggl(\left(\left(\left(W_{hwd} \cdot t \right) - \left(\frac{\pi}{L_{hwd}} \right) \cdot r_{hwd} \right) \right) \cdot \frac{\pi}{180} \biggr)^2$$

ex

$$73.23764 \text{W/m}^{_{3}} = \frac{0.609 \cdot 377\Omega \cdot (5\text{A})^{2}}{4 \cdot \pi^{2} \cdot \left(0.5\text{m}\right)^{2}} \cdot \sin \left(\left(\left((6.28e7 \text{rad/s} \cdot 0.001 \text{s}) - \left(\frac{\pi}{2\text{m}} \right) \cdot 0.5\text{m} \right) \right) \cdot \frac{\pi}{180} \right)^{2}$$

3) Directivity of Half-Wave Dipole

$$D_{\mathrm{hwd}} = rac{\left[P
ight]_{\mathrm{max}}}{\left[Pr
ight]_{\mathrm{avg}}}$$

Open Calculator 🗗

$$=$$
 1.642053 $=$ $rac{120.26 \mathrm{W/m^3}}{73.2376092 \mathrm{W/m^3}}$

4) Electric Field for Hertzian Dipole

fx
$$\mathrm{E}_{\Phi} = \eta \cdot \mathrm{H}_{\Phi}$$

Open Calculator

$$0.062961 \mathrm{V/m} = 9.3\Omega \cdot 6.77 \mathrm{mA/m}$$

5) Magnetic Field for Hertzian Dipole

$$\mathbf{H}_{\Phi} = \left(\frac{1}{r}\right)^2 \cdot \left(\cos\left(2\cdot\pi\cdot\frac{\mathbf{r}}{\lambda}\right) + 2\cdot\pi\cdot\frac{\mathbf{r}}{\lambda}\cdot\sin\left(2\cdot\pi\cdot\frac{\mathbf{r}}{\lambda}\right)\right)$$

Open Calculator 🚰

$$\boxed{ \text{ex} \left[6.773038 \text{mA/m} = \left(\frac{1}{8.3 \text{m}} \right)^2 \cdot \left(\cos \left(2 \cdot \pi \cdot \frac{8.3 \text{m}}{20 \text{m}} \right) + 2 \cdot \pi \cdot \frac{8.3 \text{m}}{20 \text{m}} \cdot \sin \left(2 \cdot \pi \cdot \frac{8.3 \text{m}}{20 \text{m}} \right) \right) \right] }$$

6) Maximum Power Density of Half-Wave Dipole

Open Calculator $\left[P\right]_{max} = \frac{\eta_{hwd} \cdot I_o^2}{4 \cdot \pi^2 \cdot r_{hwd}^2} \cdot sin \left(\left(\left(\left(W_{hwd} \cdot t \right) - \left(\frac{\pi}{L_{hwd}} \right) \cdot r_{hwd} \right) \right) \cdot \frac{\pi}{180} \right)^2$

 $120.2588 \text{W/m}^3 = \frac{377\Omega \cdot (5\text{A})^2}{4 \cdot \pi^2 \cdot (0.5\text{m})^2} \cdot \sin \left(\left(\left((6.2867 \text{rad/s} \cdot 0.001 \text{s}) - \left(\frac{\pi}{2\text{m}} \right) \cdot 0.5\text{m} \right) \right) \cdot \frac{\pi}{180} \right)^2$

7) Polarization

 $\mathbf{E} = \mathbf{X}_{\mathrm{e}} \cdot [\mathrm{Permitivity-vacuum}] \cdot \mathbf{E}$

Open Calculator 🗗

 $\mathbf{ex} \ 0.02124 \mathrm{C^*cm^2/V} = 800 \cdot [\mathrm{Permitivity-vacuum}] \cdot 300 \mathrm{V/m}$

8) Power Radiated by Half-Wave Dipole

Open Calculator 🚰

$$\boxed{p_{rad} = \left(\frac{0.609 \cdot \eta_{hwd} \cdot \left(I_{o}\right)^{2}}{\pi}\right) \cdot sin\left(\left(\left(W_{hwd} \cdot t\right) - \left(\left(\frac{\pi}{L_{hwd}}\right) \cdot r_{hwd}\right)\right) \cdot \frac{\pi}{180}\right)^{2}}$$

fx

$$\boxed{230.0828\mathrm{W} = \left(\frac{0.609 \cdot 377\Omega \cdot (5\mathrm{A})^2}{\pi}\right) \cdot \sin\left(\left((6.28\mathrm{e}7\mathrm{rad/s} \cdot 0.001\mathrm{s}) - \left(\left(\frac{\pi}{2\mathrm{m}}\right) \cdot 0.5\mathrm{m}\right)\right) \cdot \frac{\pi}{180}\right)^2}$$

9) Poynting Vector Magnitude

 $\mathbf{S}_{\mathrm{r}} = rac{1}{2} \cdot \left(rac{\mathrm{I}_{\mathrm{d}} \cdot \mathrm{k} \cdot \mathrm{d}}{4 \cdot \pi}
ight)^2 \cdot \eta \cdot \left(\sin(\theta)
ight)^2$

Open Calculator 🚰

$$\boxed{\textbf{ex}} \ 12.43729 \text{kW/m}^2 = \frac{1}{2} \cdot \left(\frac{23.4 \text{A} \cdot 5.1 \cdot 6.4 \text{m}}{4 \cdot \pi}\right)^2 \cdot 9.3 \Omega \cdot \left(\sin(45 \text{rad})\right)^2$$

© calculatoratoz.com. A softusvista inc. venture!

10) Radiation Efficiency of Antenna

$$\boxed{ \eta_{\rm r} = \frac{G}{D_{\rm max}} }$$

Open Calculator 🚰

$$\boxed{\text{ex}} \ 3.03125 = \frac{9.7}{3.2}$$

11) Radiation Resistance of Antenna

$$m R_{rad} = 2 \cdot rac{P_r}{i_o^2}$$

Open Calculator

12) Radiation Resistance of Half-Wave Dipole

$$ag{R}_{
m hwd} = rac{0.609 \cdot \eta_{
m hwd}}{\pi}$$

Open Calculator 🗗

$$(<\mathrm{P}_{\mathrm{rad}}~>) = \left(rac{\left(\mathrm{I}_{\mathrm{o}}
ight)^{2}}{2}
ight) \cdot \left(rac{0.609 \cdot \eta_{\mathrm{hwd}}}{\pi}
ight)$$

Open Calculator

Variables Used

- [P]_{max} Maximum Power Density (Watt Per Cubic Meter)
- [Pr]_{avq} Average Power Density (Watt Per Cubic Meter)
- < P_{rad} > Time Average Radiated Power (Watt)
- d Source Distance (Meter)
- Dhwd Directivity of Half Wave Dipole
- D_{max} Maximum Directivity
- **E** Electric Field Strength (Volt per Meter)
- E_o Electric Field Component (Volt per Meter)
- G Maximum Gain
- H_Φ Magnetic Field Component (Milliampere per Meter)
- Id Dipole Current (Ampere)
- io Sinusoidal Current (Ampere)
- **I** Amplitude of Oscillating Current (Ampere)
- k Wavenumber
- Lhwd Length of Antenna (Meter)
- P Polarization (Coulomb Square Centimeter per Volt)
- P_r Average Power (Watt)
- p_{rad} Power Radiated by Half-wave Dipole (Watt)
- r Dipole Distance (Meter)
- rhwd Radial Distance from Antenna (Meter)
- R_{hwd} Radiation Resistance of Half-wave Dipole (Ohm)
- R_{rad} Radiation Resistance (Ohm)
- S_r Poynting Vector (Kilowatt per Square Meter)
- t Time (Second)
- W_{hwd} Angular Frequency of Half Wave Dipole (Radian per Second)
- η Intrinsic Impedance (Ohm)
- nhwd Intrinsic Impedance of Medium (Ohm)
- η_r Radiation Efficiency of Antenna
- θ Polar Angle (Radian)
- λ Dipole Wavelength (Meter)

• Xe Electric Susceptibility

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [Permitivity-vacuum], 8.85E-12 Permittivity of vacuum
- Function: cos, cos(Angle)

 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle)

 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion

 ✓
- Measurement: Electric Current in Ampere (A)

 Electric Current Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Angle in Radian (rad)

 Angle Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Wavelength in Meter (m)
 Wavelength Unit Conversion
- Measurement: Linear Current Density in Milliampere per Meter (mA/m)
 Linear Current Density Unit Conversion
- Measurement: Electric Field Strength in Volt per Meter (V/m)

 Electric Field Strength Unit Conversion
- Measurement: Heat Flux Density in Kilowatt per Square Meter (kW/m²)
 Heat Flux Density Unit Conversion
- Measurement: Power Density in Watt Per Cubic Meter (W/m³)

 Power Density Unit Conversion
- Measurement: Polarizability in Coulomb Square Centimeter per Volt (C*cm²/V)
 Polarizability Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s)

 Angular Frequency Unit Conversion

Check other formula lists

Electromagnetic Radiation and Antennas
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/27/2024 | 5:34:18 AM UTC

Please leave your feedback here...

