
calculatoratoz.com

unitsconverters.com

Stiffness Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Stiffness Formulas

Stiffness

1) Diameter of Spring Wire or Coil given Stiffness of Spring
$f \times d=\left(\frac{64 \cdot K \cdot R^{3} \cdot N}{G_{\text {Torsion }}}\right)^{\frac{1}{4}}$
Open Calculator
ex $45 \mathrm{~mm}=\left(\frac{64 \cdot 25 \mathrm{~N} / \mathrm{mm} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa}}\right)^{\frac{1}{4}}$
2) Mean Radius of Spring given Stiffness of Spring
$\mathrm{f} \times \mathrm{R}=\left(\frac{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~K} \cdot \mathrm{~N}}\right)^{\frac{1}{3}}$
$\boldsymbol{e x} 225 \mathrm{~mm}=\left(\frac{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{64 \cdot 25 \mathrm{~N} / \mathrm{mm} \cdot 9}\right)^{\frac{1}{3}}$
3) Modulus of Rigidity given Stiffness of Spring $\boxed{\boxed{ }}$

$$
f \times G_{\text {Torsion }}=\frac{64 \cdot \mathrm{~K} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{~d}^{4}}
$$

ex $40 \mathrm{GPa}=\frac{64 \cdot 25 \mathrm{~N} / \mathrm{mm} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{(45 \mathrm{~mm})^{4}}$
4) Number of Spring Coils given Stiffness of Spring
$\mathrm{fx} \mathrm{N}=\frac{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{R}^{3} \cdot \mathrm{~K}}$
ex $9=\frac{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{64 \cdot(225 \mathrm{~mm})^{3} \cdot 25 \mathrm{~N} / \mathrm{mm}}$
5) Stiffness of Spring
$f \times K=\frac{G_{\text {Torsion }} \cdot d^{4}}{64 \cdot R^{3} \cdot N}$
$\mathrm{ex} 25 \mathrm{~N} / \mathrm{mm}=\frac{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{64 \cdot(225 \mathrm{~mm})^{3} \cdot 9}$

Square Section Wire ©

6) Mean Radius given Stiffness of Square Section Wire Spring
$f \mathrm{fx} \mathrm{R}_{\mathrm{sq}}=\left(\frac{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{~N} \cdot \mathrm{~K}}\right)^{\frac{1}{3}}$
Open Calculator
ex $253.5946 \mathrm{~mm}=\left(\frac{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot 9 \cdot 25 \mathrm{~N} / \mathrm{mm}}\right)^{\frac{1}{3}}$
7) Modulus of Rigidity given Stiffness of Square Section Wire Spring

Open Calculator
ex $27.9375 \mathrm{GPa}=\frac{25 \mathrm{~N} / \mathrm{mm} \cdot 44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 9}{(45 \mathrm{~mm})^{4}}$
8) Number of Spring Coils given Stiffness of Square Section Wire Spring E
$\mathrm{fx} \mathrm{N}_{\mathrm{sq}}=\frac{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~K}}$
Open Calculator
ex $12.88591=\frac{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 25 \mathrm{~N} / \mathrm{mm}}$
9) Stiffness of Square Section Wire Spring
$\mathrm{fx}_{\mathrm{X}}^{\mathrm{Kq}}=\frac{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}$
ex $35.79418 \mathrm{~N} / \mathrm{mm}=\frac{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 9}$
10) Width given Stiffness of Square Section Wire Spring
$f \mathrm{f} \mathrm{w}_{\mathrm{sq}}=\left(\frac{\mathrm{K} \cdot 44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }}}\right)^{\frac{1}{4}}$
ex $41.13812 \mathrm{~mm}=\left(\frac{25 \mathrm{~N} / \mathrm{mm} \cdot 44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa}}\right)^{\frac{1}{4}}$

Variables Used

- d Diameter of Spring (Millimeter)
- $\mathbf{G}_{\mathbf{s q}}$ Modulus of Rigidity of Square Section Wire Spring (Gigapascal)
- Gorsion Modulus of Rigidity (Gigapascal)
- K Stiffness of Spring (Newton per Millimeter)
- $\mathbf{K}_{\mathbf{s q}}$ Stiffness of Square Section Wire Spring (Newton per Millimeter)
- \mathbf{N} Number of Coils
- $\mathbf{N}_{\text {sq }}$ Number of Spring Coils of Sq. Sec. Wire Spring
- R Mean Radius (Millimeter)
- $\mathbf{R}_{\mathbf{s q}}$ Mean Radius of Square Section Wire Spring (Millimeter)
- $\mathbf{W}_{\mathbf{s q}}$ Width of Square Section Wire Spring (Millimeter)

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Pressure in Gigapascal (GPa) Pressure Unit Conversion
- Measurement: Stiffness Constant in Newton per Millimeter (N/mm) Stiffness Constant Unit Conversion

Check other formula lists

- Deflection in Spring Formulas • Proof Load on Spring
- Maximum Bending Stress in Formulas Spring Formulas
- Stiffness Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

