
calculatoratoz.com

unitsconverters.com

Proof Load on Spring Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Proof Load on Spring Formulas

Proof Load on Spring

Leaf Springs ©

1) Deflection given Proof Load on Leaf Spring

$$
\mathrm{fx} \delta=\frac{3 \cdot \mathrm{~W}_{\mathrm{O}(\text { Leaf Spring })} \cdot \mathrm{L}^{3}}{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{t}^{3} \cdot \mathrm{~b}}
$$

Open Calculator
ex $3.404713 \mathrm{~mm}=\frac{3 \cdot 585 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot(460 \mathrm{~mm})^{3} \cdot 300 \mathrm{~mm}}$
2) Length given Proof Load on Leaf Spring
$f \mathrm{x}=\left(\frac{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3} \cdot \delta}{3 \cdot \mathrm{~W}_{\mathrm{O} \text { (Leaf Spring) }}}\right)^{\frac{1}{3}}$

ex

$4168.075 \mathrm{~mm}=\left(\frac{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}{3 \cdot 585 \mathrm{kN}}\right)^{\frac{1}{3}}$
3) Modulus of Elasticity given Proof Load on Leaf Spring
$f \times E=\frac{3 \cdot W_{O(\text { Leaf Spring })} \cdot L^{3}}{8 \cdot n \cdot b \cdot t^{3} \cdot \delta}$

$$
20027.73 \mathrm{MPa}=\frac{3 \cdot 585 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}
$$

4) Number of Plates given Proof Load on Leaf Spring
$\mathrm{fx} \mathrm{n}=\frac{3 \cdot \mathrm{~W}_{\mathrm{O}(\text { Leaf Spring })} \cdot \mathrm{L}^{3}}{8 \cdot \mathrm{E} \cdot \mathrm{b} \cdot \mathrm{t}^{3} \cdot \delta}$

Open Calculator

$$
8.01109=\frac{3 \cdot 585 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 20000 \mathrm{MPa} \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}
$$

5) Proof Load on Leaf Spring
$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{O}(\text { Leaf Spring })}=\frac{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3} \cdot \delta}{3 \cdot \mathrm{~L}^{3}}$
ex $584.1901 \mathrm{kN}=\frac{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}{3 \cdot(4170 \mathrm{~mm})^{3}}$
6) Thickness given Proof Load on Leaf Spring
$f \mathrm{x} t=\left(\frac{3 \cdot \mathrm{~W}_{\mathrm{O}(\text { Leaf Spring })} \cdot \mathrm{L}^{3}}{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \delta \cdot \mathrm{b}}\right)^{\frac{1}{3}}$

Open Calculator

ex $460.2125 \mathrm{~mm}=\left(\frac{3 \cdot 585 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 3.4 \mathrm{~mm} \cdot 300 \mathrm{~mm}}\right)^{\frac{1}{3}}$
7) Width given Proof Load on Leaf Spring
$\mathrm{fx}_{\mathrm{x}} \mathrm{b}=\frac{3 \cdot \mathrm{~W}_{\mathrm{O}(\text { Leaf Spring })} \cdot \mathrm{L}^{3}}{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{t}^{3} \cdot \delta}$
Open Calculator
ex $300.4159 \mathrm{~mm}=\frac{3 \cdot 585 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}$

Quarter Elliptical Springs ©

8) Deflection given Proof Load in Quarter Elliptical Spring
$\mathrm{fx} \delta=\frac{6 \cdot \mathrm{~W}_{\mathrm{O}(\text { Elliptical Spring })} \cdot \mathrm{L}^{3}}{\mathrm{E} \cdot \mathrm{n} \cdot \mathrm{t}^{3} \cdot \mathrm{~b}}$
$\mathrm{ex} 3.445454 \mathrm{~mm}=\frac{6 \cdot 37 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{20000 \mathrm{MPa} \cdot 8 \cdot(460 \mathrm{~mm})^{3} \cdot 300 \mathrm{~mm}}$
9) Length given Proof Load in Quarter Elliptical Spring
$f \times\left(\frac{\mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3} \cdot \delta}{6 \cdot \mathrm{~W}_{\mathrm{O}(\text { (Elliptical Spring })}}\right)^{\frac{1}{3}}$
Open Calculator
$\boldsymbol{e x} 4151.581 \mathrm{~mm}=\left(\frac{20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}{6 \cdot 37 \mathrm{kN}}\right)^{\frac{1}{3}}$
10) Modulus of Elasticity given Proof Load in Quarter Elliptical Spring
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{E}}=\frac{6 \cdot \mathrm{~W}_{\mathrm{O}(\text { Elliptical Spring })} \cdot \mathrm{L}^{3}}{\mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3} \cdot \delta}$
Open Calculator
ex $20267.37 \mathrm{MPa}=\frac{6 \cdot 37 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}$
11) Number of Plates given Proof Load in Quarter Elliptical Spring
$f_{x} \mathrm{n}=\frac{6 \cdot \mathrm{~W}_{\mathrm{O}(\text { Elliptical Spring })} \cdot L^{3}}{\mathrm{E} \cdot \mathrm{b} \cdot \mathrm{t}^{3} \cdot \delta}$
ex $8.10695=\frac{6 \cdot 37 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{20000 \mathrm{MPa} \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}$
12) Proof Load in Quarter Elliptical Spring
$f_{x} \mathrm{~W}_{\mathrm{O}(\text { Elliptical Spring })}=\frac{\mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3} \cdot \delta}{6 \cdot \mathrm{~L}^{3}}$

Open Calculator

ex $36.51188 \mathrm{kN}=\frac{20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}{6 \cdot(4170 \mathrm{~mm})^{3}}$
13) Thickness given Proof Load in Quarter Elliptical Spring
$f \mathrm{fx}=\left(\frac{6 \cdot \mathrm{~W}_{\mathrm{O}(\text { Elliptical Spring })} \cdot \mathrm{L}^{3}}{\mathrm{E} \cdot \mathrm{n} \cdot \delta \cdot \mathrm{b}}\right)^{\frac{1}{3}}$
Open Calculator
ex $462.0408 \mathrm{~mm}=\left(\frac{6 \cdot 37 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{20000 \mathrm{MPa} \cdot 8 \cdot 3.4 \mathrm{~mm} \cdot 300 \mathrm{~mm}}\right)^{\frac{1}{3}}$
14) Width given Proof Load in Quarter Elliptical Spring

$$
f_{\mathrm{x}} \mathrm{~b}=\frac{6 \cdot \mathrm{~W}_{\mathrm{O}(\text { Elliptical Spring })} \cdot \mathrm{L}^{3}}{\mathrm{E} \cdot \mathrm{n} \cdot \mathrm{t}^{3} \cdot \delta}
$$

ex $304.0106 \mathrm{~mm}=\frac{6 \cdot 37 \mathrm{kN} \cdot(4170 \mathrm{~mm})^{3}}{20000 \mathrm{MPa} \cdot 8 \cdot(460 \mathrm{~mm})^{3} \cdot 3.4 \mathrm{~mm}}$

Springs in Parallel and Series Load ©

15) Springs in Parallel - Load
$\mathrm{fx} \mathrm{W}_{\text {load }}=\mathrm{W}_{1}+\mathrm{W}_{2}$
ex $85 \mathrm{~N}=35 \mathrm{~N}+50 \mathrm{~N}$
16) Springs in Parallel - Spring Constant
$\mathrm{fx}_{\mathrm{x}} \mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}$
Open Calculator
ex $100 \mathrm{~N} / \mathrm{mm}=49 \mathrm{~N} / \mathrm{mm}+51 \mathrm{~N} / \mathrm{mm}$
17) Springs in Series- Deflection
$\mathrm{fx} \delta=\delta_{1}+\delta_{2}$
Open Calculator
ex $179 \mathrm{~mm}=36 \mathrm{~mm}+143 \mathrm{~mm}$
18) Springs in Series- Spring Constant
f. $\mathrm{K}=\frac{\mathrm{K}_{1} \cdot \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$

Open Calculator
ex $24.99 \mathrm{~N} / \mathrm{mm}=\frac{49 \mathrm{~N} / \mathrm{mm} \cdot 51 \mathrm{~N} / \mathrm{mm}}{49 \mathrm{~N} / \mathrm{mm}+51 \mathrm{~N} / \mathrm{mm}}$

Variables Used

- b Width of Cross Section (Millimeter)
- E Young's Modulus (Megapascal)
- K Stiffness of Spring (Newton per Millimeter)
- \mathbf{K}_{1} Stiffness of Spring 1 (Newton per Millimeter)
- $\mathbf{K}_{\mathbf{2}}$ Stiffness of Spring 2 (Newton per Millimeter)
- L Length in Spring (Millimeter)
- \mathbf{n} Number of Plates
- t Thickness of Section (Millimeter)
- \mathbf{W}_{1} Load 1 (Newton)
- $\mathbf{W}_{\mathbf{2}}$ Load 2 (Newton)
- W load Spring Load (Newton)
- WO (Elliptical Spring) Proof Load on Elliptical Spring (Kilonewton)
- W (Leaf Spring) Proof Load on Leaf Spring (Kilonewton)
- $\bar{\delta}$ Deflection of Spring (Millimeter)
- $\mathbf{\delta}_{1}$ Deflection 1 (Millimeter)
- $\boldsymbol{\delta}_{2}$ Deflection 2 (Millimeter)

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N)

Force Unit Conversion

- Measurement: Stiffness Constant in Newton per Millimeter (N/mm) Stiffness Constant Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Deflection in Spring Formullas • Proof Load on Spring
- Maximum Bending Stress in Formulas Spring Formulas
- Stiffness Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

