Projectile Motion Formulas...

1/8

Projectile Motion Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 14 Projectile Motion Formulas

Projectile Motion 🕑

1) Direction of Projectile at given Height above Point of Projection 🕑

$$\begin{aligned} & \overbrace{\theta_{\mathrm{pr}} = a \tan \left(\frac{\sqrt{\left(\mathrm{v}_{\mathrm{pm}}^2 \cdot \left(\sin \left(\alpha_{\mathrm{pr}} \right) \right)^2 \right) - 2 \cdot [\mathrm{g}] \cdot \mathrm{h}}}{\mathrm{v}_{\mathrm{pm}} \cdot \cos \left(\alpha_{\mathrm{pr}} \right)} \right) \end{aligned} \right) \end{aligned}$$

ex

$$35.22605^{\circ} = a \tan\left(\frac{\sqrt{\left((30.01 \text{m/s})^2 \cdot (\sin(44.99^{\circ}))^2\right) - 2 \cdot [\text{g}] \cdot 11.5 \text{m}}}{30.01 \text{m/s} \cdot \cos(44.99^{\circ})}\right)$$

2) Horizontal Component of Velocity of Particle Projected Upwards from Point at Angle

fx
$$\mathrm{v_{h}} = \mathrm{v_{pm}} \cdot \mathrm{cos} ig(\mathrm{a_{pr}} ig)$$

ex
$$21.22398 \text{m/s} = 30.01 \text{m/s} \cdot \cos(44.99^{\circ})$$

Open Calculator 🗹

Projectile Motion Formulas...

4) Horizontal Range of Projectile given Horizontal Velocity and Time of Flight

fx
$$\mathrm{H}=\mathrm{v_{h}}\cdot\mathrm{t_{pr}}$$

ex $91.375m = 21.5m/s \cdot 4.25s$

5) Initial Velocity given Maximum Horizontal Range of Projectile

fx
$$\mathbf{v}_{\mathrm{pm}} = \sqrt{\mathrm{H}_{\mathrm{max}}\cdot[\mathrm{g}]}$$

ex
$$31.00083 \mathrm{m/s} = \sqrt{98 \mathrm{m} \cdot \mathrm{[g]}}$$

6) Initial Velocity of Particle given Horizontal Component of Velocity

$$\begin{aligned} & \mathbf{k} \mathbf{v}_{\mathrm{pm}} = \frac{\mathbf{v}_{\mathrm{h}}}{\cos\left(\alpha_{\mathrm{pr}}\right)} \\ & \mathbf{ex} \end{aligned} \\ & 30.40029 \mathrm{m/s} = \frac{21.5 \mathrm{m/s}}{\cos(44.99^\circ)} \end{aligned}$$

Open Calculator

Open Calculator

Open Calculator

Projectile Motion Formulas...

7) Initial Velocity of Particle given Time of Flight of Projectile

fx
$$v_{pm} = \frac{[g] \cdot t_{pr}}{2 \cdot \sin(\alpha_{pr})}$$

ex $29.47613 \text{m/s} = \frac{[g] \cdot 4.25 \text{s}}{2 \cdot \sin(44.99^{\circ})}$
8) Initial Velocity of Particle given Vertical Component of Velocity

fx
$$\mathbf{v}_{pm} = \frac{\mathbf{v}_{v}}{\sin(\alpha_{pr})}$$

ex $31.11813 \text{m/s} = \frac{22 \text{m/s}}{\sin(44.99^{\circ})}$

9) Maximum Height of Projectile on Horizontal Plane 🕑

$$\int \mathbf{x} \mathbf{h}_{\max} = \frac{\mathbf{v}_{pm}^2 \cdot \sin(\alpha_{pr})^2}{2 \cdot [g]}$$

$$e \mathbf{x} 22.9509 \mathbf{m} = \frac{(30.01 \mathrm{m/s})^2 \cdot \sin(44.99^\circ)^2}{2 \cdot [g]}$$

10) Maximum Height of Projectile on Horizontal Plane given Average Vertical Velocity

fx
$$h_{max} = v_{ver} \cdot t_{pr}$$

ex $23.375m = 5.5m/s \cdot 4.25s$

Open Calculator (

Open Calculator

11) Maximum Horizontal Range of Projectile 🕑

12) Time of Flight of Projectile on Horizontal Plane

13) Velocity of Projectile at given Height above Point of Projection

fx
$$\mathrm{v_p} = \sqrt{\mathrm{v_{pm}^2} - 2 \cdot \mathrm{[g]} \cdot \mathrm{h}}$$

ex
$$25.98167 \text{m/s} = \sqrt{(30.01 \text{m/s})^2 - 2 \cdot [\text{g}] \cdot 11.5 \text{m}}$$

14) Vertical Component of Velocity of Particle Projected Upwards from Point at Angle

fx
$$\mathbf{v}_{\mathrm{v}} = \mathbf{v}_{\mathrm{pm}} \cdot \sinig(a_{\mathrm{pr}} ig)$$

Open Calculator

Open Calculator

$$= 21.21657 \mathrm{m/s} = 30.01 \mathrm{m/s} \cdot \mathrm{sin}(44.99\degree)$$

Variables Used

- h Height (Meter)
- H Horizontal Range (Meter)
- h_{max} Maximum Height (Meter)
- Hmax Maximum Horizontal Range (Meter)
- t_{pr} Time Interval (Second)
- Vh Horizontal Component of Velocity (Meter per Second)
- Vp Velocity of Projectile (Meter per Second)
- Vpm Initial Velocity of Projectile Motion (Meter per Second)
- Vv Vertical Component of Velocity (Meter per Second)
- Vver Average Vertical Velocity (Meter per Second)
- α_{pr} Angle of Projection (Degree)
- θ_{pr} Direction of Motion of a Particle (Degree)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: **sin**, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: **sqrt**, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion

Check other formula lists

Projectile Motion Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/9/2024 | 7:24:26 AM UTC

Please leave your feedback here ...

