

The Swedish Slip Circle Method Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 38 The Swedish Slip Circle Method Formulas

The Swedish Slip Circle Method 🕑

3) Curve Length of Each Slice given Resisting Force from Coulomb's Equation

$$\label{eq:DeltaL} \begin{split} & \textbf{fx} \boxed{\Delta L = \frac{F_r - \left(N \cdot tan((\phi))\right)}{c_u}} & \textbf{Open Calculator C} \\ \\ & \textbf{ex} \\ \hline 3.412641m = \frac{35N - (4.99N \cdot tan((9.93°)))}{10Pa} \end{split}$$

4) Distance between Line of Action and Line Passing through Center given Driving Moment

5) Distance between Line of Action and Line Passing through Center given Mobilized Cohesion

6) Distance between Line of Action of Weight and Line Passing through Center

10) Factor of Safety given Mobilized Shear resistance of Soil

()

17) Mobilized Shear Resistance of Soil given Factor of Safety

$$\mathbf{k} \quad \mathbf{c}_{m} = \frac{\mathbf{c}_{u}}{\mathbf{f}_{s}}$$

$$\mathbf{c}_{m} = \frac{\mathbf{c}_{u}}{\mathbf{f}_{s}}$$

$$\mathbf{k} \quad \mathbf{c}_{m} = \frac{\mathbf{c}_{u}}{2.8}$$

$$\mathbf{k} \quad \mathbf{k} \quad \mathbf{k}$$

21) Normal Component given Resisting Force from Coulomb's Equation

fx
$$\mathrm{F_{N}}=rac{\mathrm{F_{r}}-(\mathrm{c_{u}}\cdot\Delta\mathrm{L})}{\mathrm{tan}((\phi))}$$

$$5.026632 \mathrm{N} = \frac{35 \mathrm{N} - (10 \mathrm{Pa} \cdot 3.412 \mathrm{m})}{\mathrm{tan}((9.93^{\circ}))}$$

22) Radial Distance from Center of Rotation given Length of Slip Arc

fx
$$d_{radial} = rac{360 \cdot L'}{2 \cdot \pi \cdot \delta \cdot \left(rac{180}{\pi}
ight)}$$

$$1.499975\mathrm{m} = \frac{1.499975\mathrm{m}}{2 \cdot \pi \cdot 2.0001\mathrm{rad} \cdot \left(\frac{180}{\pi}\right)}$$

23) Radial Distance from Centre of Rotation given Factor of Safety

fx
$$d_{radial} = \frac{f_s}{\frac{c_u \cdot L'}{W \cdot x'}}$$

ex $0.933302m = \frac{2.8}{\frac{10Pa \cdot 3.0001m}{8N \cdot 1.25m}}$

ex

Open Calculator

Open Calculator

Open Calculator

28) Sum of Normal Component given Factor of Safety 🕑

$$\begin{split} & \Sigma F_{N} = \frac{\left(f_{s} \cdot F_{t}\right) - \left(c_{u} \cdot L^{'}\right)}{\tan\left(\frac{\Phi_{i} \cdot \pi}{180}\right)} \\ & \\ & \\ \text{ex} \quad 31.64481N = \frac{\left(2.8 \cdot 11.0N\right) - \left(10Pa \cdot 3.0001m\right)}{\tan\left(\frac{82.87^{\circ} \cdot \pi}{180}\right)} \end{split}$$

29) Sum of Normal Component given Resisting Moment 子

$$\begin{aligned} & \sum \Sigma N = \frac{\left(\frac{M_R}{r}\right) - \left(c_u \cdot L'\right)}{\tan((\Phi_i))} \\ & \text{ex} \end{aligned} \\ & 5.639274N = \frac{\left(\frac{45.05 \text{kN*m}}{0.6\text{m}}\right) - (10 \text{Pa} \cdot 3.0001\text{m})}{\tan((82.87^\circ))} \end{aligned}$$

30) Sum of Tangential Component given Driving Moment 🕑

fx
$$F_t = \frac{M_D}{r}$$

ex $16.66667N = \frac{10.0kN^*m}{0.6m}$

Open Calculator

31) Sum of Tangential Component given Factor of Safety 🕑

$$\mathbf{f_x} \mathbf{F_t} = \frac{\left(\mathbf{c_u} \cdot \mathbf{L'}\right) + \left(\Sigma \mathbf{N} \cdot \tan\left(\frac{\mathbf{\phi} \cdot \pi}{180}\right)\right)}{\mathbf{f_s}}$$

$$(10 \mathbf{P_2} \cdot 3.0001 \mathbf{m}) + (5.01 \mathbf{N} \cdot \tan\left(\frac{9.93}{180}\right))$$

ex
$$10.72006$$
N = $\frac{(10$ Pa $\cdot 3.0001$ m) + $(5.01$ N $\cdot tan(\frac{9.93^{\circ} \cdot \pi}{180}))}{2.8}$

32) Total Length of Slip Circle given Resisting Moment

$$\mathbf{fx} \begin{bmatrix} \frac{\left(\frac{M_R}{r}\right) - \left(\Sigma N \cdot tan((\Phi_i))\right)}{c_u} \end{bmatrix}$$

$$\mathbf{fx} \begin{bmatrix} \frac{\left(\frac{M_R}{r}\right) - \left(\Sigma N \cdot tan((\Phi_i))\right)}{c_u} \end{bmatrix}$$

$$\mathbf{fx} \begin{bmatrix} 3.503164m = \frac{\left(\frac{45.05kN^*m}{0.6m}\right) - (5.01N \cdot tan((82.87^\circ)))}{10Pa} \end{bmatrix}$$

33) Unit Cohesion given Factor of Safety 🕑

$$f_{X} c_{u} = f_{s} \cdot \frac{W \cdot x'}{L' \cdot d_{radial}}$$

$$e_{X} 6.222015Pa = 2.8 \cdot \frac{8N \cdot 1.25m}{3.0001m \cdot 1.5m}$$

$$34) Unit Cohesion given Mobilized Shear Resistance of Soil C$$

$$f_{X} c_{u} = f_{s} \cdot c_{m}$$

$$Open Calculator C$$

$$\texttt{ex} \hspace{0.1cm} 9.996 \texttt{Pa} = 2.8 \cdot 3.57 \texttt{Pa}$$

Open Calculator

35) Unit Cohesion given Resisting Force from Coulomb's Equation 子

$$\begin{aligned} \mathbf{k} \quad \mathbf{c}_u &= \frac{\mathbf{F}_r - (\mathbf{N} \cdot \tan((\phi)))}{\Delta \mathbf{L}} \\ \mathbf{k} \quad \mathbf{c}_u &= \frac{\mathbf{F}_r - (\mathbf{N} \cdot \tan((\phi)))}{\Delta \mathbf{L}} \\ \mathbf{k} \quad \mathbf{10.00188Pa} &= \frac{35\mathbf{N} - (4.99\mathbf{N} \cdot \tan((9.93\degree)))}{3.412\mathbf{m}} \\ \mathbf{36) \text{ Unit Cohesion given Sum of Tangential Component } \mathbf{k} \\ \mathbf{k} \quad \mathbf{c}_u &= \frac{(\mathbf{f}_s \cdot \mathbf{F}_t) - \left(\Sigma\mathbf{N} \cdot \tan\left(\frac{\phi \cdot \pi}{180}\right)\right)}{\mathbf{L}} \\ \mathbf{k} \quad \mathbf{c}_u &= \frac{(\mathbf{f}_s \cdot \mathbf{F}_t) - \left(\Sigma\mathbf{N} \cdot \tan\left(\frac{\phi \cdot \pi}{180}\right)\right)}{\mathbf{L}} \\ \mathbf{k} \quad \mathbf{c}_u &= \frac{(2.8 \cdot 11.0\mathbf{N}) - (5.01\mathbf{N} \cdot \tan\left(\frac{9.93\degree \cdot \pi}{180}\right))}{3.0001\mathbf{m}} \\ \mathbf{37) \text{ Weight of Soil on Wedge given Factor of Safety } \\ \mathbf{k} \quad \mathbf{k} &= \frac{\mathbf{c}_u \cdot \mathbf{L} \cdot \mathbf{d}_{radial}}{\mathbf{f}_s \cdot \mathbf{x}} \\ \mathbf{k} \quad \mathbf{12.85757N} &= \frac{10\mathbf{Pa} \cdot 3.0001\mathbf{m} \cdot 1.5\mathbf{m}}{2.8 \cdot 1.25\mathbf{m}} \end{aligned}$$

38) Weight of Soil on Wedge given Mobilized Shear Resistance of Soil 🕑

Open Calculator 🕑

Variables Used

- Cm Mobilized Shear Resistance of Soil (Pascal)
- **C**_{II} Unit Cohesion (Pascal)
- dradial Radial Distance (Meter)
- **F**_N Normal Component of Force in Soil Mechanics (*Newton*)
- **F**_r Resisting Force (Newton)
- **f**_s Factor of Safety
- **F**_t Sum of All Tangential Component in Soil Mechanics (*Newton*)
- L_{s'} Length of Slip Arc with Factor of Safety (Meter)
- L Length of Slip Arc (Meter)
- M_D Driving Moment (Kilonewton Meter)
- M_{r'} Moment of Resistance with Factor of Safety (Kilonewton Meter)
- M_R Resisting Moment (Kilonewton Meter)
- N Normal Component of Force (Newton)
- **r** Radius of Slip Circle (Meter)
- W Weight of Body in Newtons (Newton)
- X' Distance between LOA and COR (Meter)
- δ Arc Angle (Radian)
- ΔL Curve Length (Meter)
- ΣF_N Sum of All Normal Component in Soil Mechanics (Newton)
- ΣN Sum of all Normal Component (Newton)
- **φ** Angle of Internal Friction (*Degree*)

• **Φ_i** Angle of Internal Friction of Soil (*Degree*)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Pressure in Pascal (Pa) Pressure Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°), Radian (rad)
 Angle Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m) Moment of Force Unit Conversion

Check other formula lists

- Bearing Capacity for Strip Footing for C-Φ Soils Formulas
- Bearing Capacity of Cohesive Soil, Formulas
- Bearing Capacity of Non-cohesive Soil Formulas
- Bearing Capacity of Soils
 Formulas
- Bearing Capacity of Soils: Meyerhof's Analysis Formulas C
- Foundation Stability Analysis
 Formulas
- Atterberg Limits Formulas G
- Bearing Capacity of Soil: Terzaghi's Analysis Formulas
- Compaction of Soil Formulas
- Earth Moving Formulas
- Lateral Pressure for Cohesive and
 Non Cohesive Soil Formulas
- Minimum Depth of Foundation by Rankine's Analysis Formulas
- Pile Foundations Formulas G

Porosity of Soil Sample
 Formulas

- Scraper Production Formulas G
- 🔹 Seepage Analysis Formulas 🚰
- Slope Stability Analysis using Bishops Method Formulas
- Slope Stability Analysis using Culman's Method Formulas
- Soil Origin and Its Properties Formulas
- Specific Gravity of Soil Formulas
- Stability Analysis of Infinite Slopes Formulas
- Stability Analysis of Infinite Slopes in Prism Formulas
- Vibration Control in Blasting Formulas
 - Void Ratio of Soil Sample Formulas
 - Water Content of Soil and Related Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/16/2024 | 6:36:13 AM UTC

Please leave your feedback here...

