

Taylor's Stability Number and Stability Curves Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 18 Taylor's Stability Number and Stability Curves Formulas

Taylor's Stability Number and Stability Curves

ex
$$41.85161^{\circ} = \frac{130^{\circ} \cdot 9.98 \text{N/m}^3}{31 \text{N/m}^3}$$

3) Effective Angle of Internal Friction given Weighted Friction Angle 🕑

$$\begin{aligned} & \mathbf{f_s} = \left(\left(\frac{\gamma}{\gamma_{sat}} \right) \cdot \left(\frac{\tan((\phi))}{\tan((\phi_{IF}))} \right) \right) \\ & \mathbf{ex} \\ & \mathbf{2.797593} = \left(\left(\frac{31N/m^3}{9.98N/m^3} \right) \cdot \left(\frac{\tan((9.93\degree))}{\tan((11\degree))} \right) \right) \end{aligned}$$

5) Factor of Safety with respect to Shear Strength given Weighted Friction Angle

$$\begin{aligned} \mathbf{fx} & \mathbf{f_s} = \frac{\dot{\gamma} \cdot \phi'}{\phi_{IF} \cdot \gamma_{sat}} \\ \mathbf{ex} & 2.821006 = \frac{31 \mathrm{N/m^3} \cdot 9.99^{\circ}}{11^{\circ} \cdot 9.98 \mathrm{N/m^3}} \end{aligned}$$

6) Mobilized Friction Angle given Weighted Friction Angle 🕑

$$f_{\mathbf{X}} \varphi_{m} = \frac{\gamma_{sat} \cdot \varphi_{w}}{\gamma}$$

$$e_{\mathbf{X}} 41.85161^{\circ} = \frac{9.98N/m^{3} \cdot 130^{\circ}}{31N/m^{3}}$$

7) Saturated Unit Weight given Factor of Safety with respect to Shear Strength

$$\mathbf{fx} \boxed{\gamma_{sat} = \left(\left(\frac{\gamma}{\tan((\phi_{IF}))} \right) \cdot \left(\frac{\tan((\phi))}{f_s} \right) \right)}$$

$$\textbf{ex} \ 9.97142 \text{N/m}^{3} = \left(\left(\frac{31 \text{N/m}^{3}}{\tan((11^{\circ}))} \right) \cdot \left(\frac{\tan((9.93^{\circ}))}{2.8} \right) \right)$$

8) Saturated Unit Weight given Weighted and Effective Friction Angle

$$\begin{aligned} & \overbrace{\boldsymbol{\gamma}_{\mathrm{sat}}}^{'} = \frac{\gamma^{'} \cdot \boldsymbol{\varphi}'}{\boldsymbol{\varphi}_{\mathrm{IF}} \cdot \mathbf{f}_{\mathrm{s}}} \end{aligned}$$

$$& \underbrace{10.05487 \mathrm{N/m^{3}} = \frac{31 \mathrm{N/m^{3}} \cdot 9.99^{\circ}}{11^{\circ} \cdot 2.8}} \end{aligned}$$

Open Calculator

9) Saturated Unit Weight given Weighted and Mobilized Friction Angle 🕑

10) Saturated Unit Weight given Weighted Friction Angle 🕑

11) Submerged Unit Weight given Factor of Safety with respect to Shear Strength

15) Weighted Friction Angle given Effective Angle of Internal Friction

16) Weighted Friction Angle given Factor of Safety with respect to Shear Strength

17) Weighted Friction Angle given Mobilised Friction Angle 🕑

fx
$$\phi_{\rm w} = rac{\dot{\gamma} \cdot \phi_{\rm m}}{\gamma_{\rm sat}}$$

ex $124.2485^{\circ} = rac{31 {
m N/m^3} \cdot 40^{\circ}}{9.98 {
m N/m^3}}$

18) Weighted Friction Angle given Submerged Unit Weight 🕑

Variables Used

- **f**_S Factor of Safety
- Ysat Saturated Unit Weight (Newton per Cubic Meter)
- γ Submerged Unit Weight (Newton per Cubic Meter)
- **•** Angle of Internal Friction (*Degree*)
- φ' Effective Angle of Internal Friction (Degree)
- **Φ_i** Angle of Internal Friction of Soil (*Degree*)
- φ_{IF} Weighted Friction Angle for Internal Friction (Degree)
- φ_{iw} Internal Friction Angle with Weighted Frict. Angle (Degree)
- φ_m Angle of Mobilized Friction (Degree)
- φ_w Weighted Friction Angle (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: atan, atan(Number) Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: tan, tan(Angle) The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Specific Weight in Newton per Cubic Meter (N/m³) Specific Weight Unit Conversion

Check other formula lists

- Bearing Capacity for Strip Footing for C-Φ Soils Formulas
- Bearing Capacity of Cohesive Soil.
 Formulas
- Bearing Capacity of Non-cohesive Soil Formulas
- Bearing Capacity of Soils
 Formulas
- Bearing Capacity of Soils: Meyerhof's Analysis Formulas C
- Foundation Stability Analysis
 Formulas
- Atterberg Limits Formulas G
- Bearing Capacity of Soil: Terzaghi's Analysis Formulas
- Compaction of Soil Formulas
- Earth Moving Formulas
- Lateral Pressure for Cohesive and
 Non Cohesive Soil Formulas
- Minimum Depth of Foundation by Rankine's Analysis Formulas
- Pile Foundations Formulas G

Porosity of Soil Sample
 Formulas

- Scraper Production Formulas G
- Seepage Analysis Formulas G
- Slope Stability Analysis using Bishops Method Formulas
- Slope Stability Analysis using Culman's Method Formulas
- Soil Origin and Its Properties Formulas
- Specific Gravity of Soil Formulas
- Stability Analysis of Infinite
 Slopes Formulas
- Stability Analysis of Infinite Slopes in Prism Formulas
- Vibration Control in Blasting Formulas
 - Void Ratio of Soil Sample Formulas
 - Water Content of Soil and Related Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/16/2024 | 6:22:52 AM UTC

Please leave your feedback here...

