

Slope Stability Analysis using Bishops Method Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator

Open Calculator

Open Calculator

Open Calculator

List of 35 Slope Stability Analysis using Bishops Method Formulas

Slope Stability Analysis using Bishops Method 🗗

1) Change in Normal Stress given Overall Pore Pressure Coefficient

$$\Delta \sigma_1 = rac{\Delta u}{B}$$

 $ex 6Pa = \frac{3Pa}{0.50}$

2) Change in Pore Pressure given Overall Pore Pressure Coefficient

fx $\left| \Delta \mathbf{u} = \Delta \mathbf{\sigma}_1 \cdot \mathbf{B}
ight|$

$$\phi' = a anigg(rac{(ext{S} \cdot ext{f}_{ ext{s}}) - (ext{c}' \cdot ext{l})}{ ext{P} - (ext{u} \cdot ext{l})}igg)$$

 $\boxed{ 9.874119^\circ = a \tan \bigg(\frac{(11.07 \mathrm{N} \cdot 2.8) - (4 \mathrm{Pa} \cdot 9.42 \mathrm{m})}{150 \mathrm{N} - (20 \mathrm{Pa} \cdot 9.42 \mathrm{m})} \bigg) }$

4) Effective Angle of Internal Friction given Shear Strength

 $oxed{ex} 1.301768^{\circ} = a anigg(rac{0.025 ext{MPa} - 4 ext{Pa}}{1.1 ext{MPa} - 20 ext{Pa}}igg)$

5) Effective Cohesion of Soil given Normal Stress on Slice

 $\mathbf{c}' = au - \left(\left(\sigma_{
m normal} - u
ight) \cdot an \left(rac{\phi' \cdot \pi}{180}
ight)
ight)$

Open Calculator

6) Effective Cohesion of Soil given Shear Force in Bishop's Analysis

 $\mathbf{c'} = \frac{(S \cdot f_s) - \left((P - (u \cdot l)) \cdot tan\left(\frac{\phi' \cdot \pi}{180}\right)\right)}{l}$

Open Calculator

7) Effective Stress on Slice

 $\mathbf{f}\mathbf{x}$ $\mathbf{\sigma}^{'}=\left(rac{\mathrm{P}}{\mathrm{I}}
ight)-\Sigma\mathrm{U}$

ex 13.92357Pa = $\left(\frac{150\text{N}}{9.42\text{m}}\right) - 2\text{N}$

Open Calculator

8) Factor of Safety given by Bishop

 $\mathbf{f}_{\mathrm{s}} = \mathbf{m} - (\mathbf{n} \cdot \mathbf{r}_{\mathrm{u}})$

Open Calculator 🗗

 $\boxed{2.71 = 2.98 - (0.30 \cdot 0.9)}$

9) Factor of Safety given Shear Force in Bishop's Analysis

 $\mathbf{f}_{\mathrm{s}} = rac{\left(\mathrm{c'}\cdot\mathrm{l}
ight) + \left(\mathrm{P} - \left(\mathrm{u}\cdot\mathrm{l}
ight)
ight) \cdot an\left(rac{\phi'\cdot\pi}{180}
ight)}{\mathrm{S}}$

Open Calculator

 $= \frac{(4 \text{Pa} \cdot 9.42 \text{m}) + (150 \text{N} - (20 \text{Pa} \cdot 9.42 \text{m})) \cdot \tan \left(\frac{9.99^{\circ} \cdot \pi}{180}\right)}{11.07 \text{N}}$

© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!

Open Calculator

Open Calculator 2

Open Calculator 🚰

Open Calculator

10) Height of Slice given Pore Pressure Ratio

 $\mathbf{z} = \left(rac{F_{\mathrm{u}}}{r_{\mathrm{u}} \cdot \gamma}
ight)$

Open Calculator

11) Horizontal Distance of Slice from Centre of Rotation

12) Length of Arc of Slice

13) Length of Arc of Slice given Effective Stress

= 12.5m = $\frac{150N}{10Pa + 2N}$

14) Length of Arc of Slice given Shear Force in Bishop's Analysis

15) Normal Stress on Slice

$$\sigma_{
m normal} = rac{P}{l}$$

Open Calculator

16) Normal Stress on Slice given Shear Strength

$$\sigma_{
m normal} = \left(rac{ au - c}{ an \left(rac{\phi' \cdot \pi}{180}
ight)}
ight) + u$$

Open Calculator

$$23.28608 \mathrm{Pa} = \left(\frac{2.06 \mathrm{Pa} - 2.05 \mathrm{Pa}}{\tan \left(\frac{9.99^{\circ} \cdot \pi}{180} \right)} \right) + 20 \mathrm{Pa}$$

17) Overall Pore Pressure Coefficient

$$\mathbf{f}\mathbf{x} \mathbf{B} = rac{\Delta \mathbf{u}}{\Delta \sigma_1}$$

Open Calculator

$$\boxed{\textbf{ex}} 0.5 = \frac{3 \text{Pa}}{6 \text{Pa}}$$

18) Pore Pressure given Effective Stress on Slice

$$\Sigma U = \left(\frac{P}{l}\right) - \sigma'$$

Open Calculator

19) Pore Pressure Ratio given Horizontal Width

fx $\mathbf{r}_{\mathrm{u}} = rac{\mathbf{u} \cdot \mathbf{w}}{\Sigma \mathbf{W}}$

Open Calculator 🗹

20) Pore Pressure Ratio given Unit Weight

 $\mathbf{r}_{\mathrm{u}} = \left(rac{F_{\mathrm{u}}}{\gamma \cdot \mathbf{z}}
ight)$

Open Calculator

 $\boxed{0.979444 = \left(\frac{52.89 \text{kN/m}^2}{18 \text{kN/m}^3 \cdot 3.0 \text{m}}\right)}$

21) Pore Water Pressure given Pore Pressure Ratio

fx $\left[\mathbf{F}_{\mathrm{u}} = (\mathbf{r}_{\mathrm{u}} \cdot \mathbf{\gamma} \cdot \mathbf{z})
ight]$

Open Calculator

ex $48.6 \text{kN/m}^2 = (0.9 \cdot 18 \text{kN/m}^3 \cdot 3.0 \text{m})$

22) Radius of Arc when Total Shear Force on Slice is Available

 $\mathbf{r} = \frac{\Sigma \mathbf{W} \cdot \mathbf{x}}{\Sigma \mathbf{S}}$

Open Calculator

 $= \frac{59.8 \text{N} \cdot 2.99 \text{m}}{32 \text{N}}$

23) Resultant Vertical Shear Force on Section N

fx

Open Calculator

 $ext{X}_{ ext{n}} = \left(ext{F}_{ ext{n}} \cdot ext{cos}igg(rac{ heta \cdot \pi}{180}igg)
ight) + \left(ext{S} \cdot ext{sin}igg(rac{ heta \cdot \pi}{180}igg)
ight) - ext{W} + ext{X}_{(ext{n}+1)}$

ex

 $2.110605 ext{N} = \left(12.09 ext{N} \cdot \cos\left(rac{45\degree \cdot \pi}{180}
ight)
ight) + \left(11.07 ext{N} \cdot \sin\left(rac{45\degree \cdot \pi}{180}
ight)
ight) - 20.0 ext{N} + 9.87 ext{N}$

24) Resultant Vertical Shear Force on Section N+1

fx

Open Calculator 🗗

$$\overline{ {
m X}_{(n+1)} = {
m W} + {
m X}_{
m n} - \left({
m F}_{
m n} \cdot \cos \! \left(rac{ heta \cdot \pi}{180}
ight)
ight) + \left({
m S} \cdot \sin \! \left(rac{ heta \cdot \pi}{180}
ight)
ight) }$$

ex

$$\left[10.95288 \text{N} = 20.0 \text{N} + 2.89 \text{N} - \left(12.09 \text{N} \cdot \cos\left(\frac{45° \cdot \pi}{180}\right)\right) + \left(11.07 \text{N} \cdot \sin\left(\frac{45° \cdot \pi}{180}\right)\right)\right]$$

25) Shear Force in Bishop's Analysis

fx $S = au \cdot 1$

Open Calculator

 $= 1.11 \text{Pa} \cdot 9.42 \text{m}$

26) Shear Force in Bishop's Analysis given Factor of Safety

 $ext{S} = rac{(ext{c'} \cdot ext{l}) + (ext{P} - (ext{u} \cdot ext{l})) \cdot ext{tan} \left(rac{\phi' \cdot \pi}{180}
ight)}{ ext{f}_{ ext{s}}}$

Open Calculator 🗗

27) Shear Strength given Normal Stress on Slice 🗗

 $au = \left(c' + (\sigma_{normal} - u) \cdot tan\left(rac{\phi' \cdot \pi}{180}
ight)
ight)$

Open Calculator

$$\boxed{\textbf{ax} \quad 3.986945 \text{Pa} = \left(4 \text{Pa} + (15.71 \text{Pa} - 20 \text{Pa}) \cdot \tan\left(\frac{9.99^{\circ} \cdot \pi}{180}\right)\right)}$$

28) Shear Stress given Shear Force in Bishop's Analysis 🗗

fx $au=rac{ ext{S}}{1}$

Open Calculator

= 1.175159Pa = $\frac{11.07N}{9.42m}$

 $P = \sigma_{normal} \cdot l$

29) Total Normal Force Acting at Base of Slice 🖸

Open Calculator

 $147.9882N = 15.71Pa \cdot 9.42m$

30) Total Normal Force Acting at Base of Slice given Effective Stress

 $\mathbf{f}\mathbf{x} \ \mathrm{P} = \left(\mathbf{\sigma}^{'} + \Sigma \mathrm{U} \right) \cdot \mathrm{l}^{'}$

[a] 113.04N = $(10Pa + 2N) \cdot 9.42m$

31) Total Normal Force Acting on Slice given Weight of Slice

 $\boxed{ 12.86947 \mathrm{N} = \frac{20.0 \mathrm{N} + 2.89 \mathrm{N} - 9.87 \mathrm{N} - \left(11.07 \mathrm{N} \cdot \sin\left(\frac{45^{\circ} \cdot \pi}{180}\right)\right)}{\cos\left(\frac{45^{\circ} \cdot \pi}{180}\right)} }$

 $\mathbf{F}_{n} = rac{W + X_{n} - X_{(n+1)} - \left(S \cdot sin\left(rac{\theta \cdot \pi}{180}
ight)
ight)}{cos\left(rac{\theta \cdot \pi}{180}
ight)}$

Open Calculator

Open Calculator 🗗

32) Total Shear Force on Slice given Radius of Arc

 $\Sigma S = rac{\Sigma W \cdot x}{r}$

Open Calculator

33) Total Weight of Slice given Total Shear Force on Slice

 $\Sigma W = rac{\Sigma S \cdot r}{x}$

Open Calculator 🗗

34) Unit weight of Soil given Pore Pressure Ratio

 $\mathbf{f}\mathbf{x} \boxed{\gamma = \left(\frac{F_u}{r_u \cdot z}\right)}$

Open Calculator

 $oxed{ex} 19.58889 \mathrm{kN/m^3} = \left(rac{52.89 \mathrm{kN/m^2}}{0.9 \cdot 3.0 \mathrm{m}}
ight)$

35) Weight of Slice given Total Normal Force Acting on Slice

fx

Open Calculator

$${
m W} = \left({
m F_n} \cdot \cos \!\left(rac{ heta \cdot \pi}{180}
ight)
ight) + \left({
m S} \cdot \sin \!\left(rac{ heta \cdot \pi}{180}
ight)
ight) - {
m X_n} + {
m X_{(n+1)}}$$

ex

$$19.2206 \text{N} = \left(12.09 \text{N} \cdot \cos\left(\frac{45° \cdot \pi}{180}\right)\right) + \left(11.07 \text{N} \cdot \sin\left(\frac{45° \cdot \pi}{180}\right)\right) - 2.89 \text{N} + 9.87 \text{N}$$

Variables Used

- B Pore Pressure Coefficient Overall
- C Cohesion in Soil (Pascal)
- c' Effective Cohesion (Pascal)
- Fn Total Normal Force in Soil Mechanics (Newton)
- fs Factor of Safety
- Fu Upward Force in Seepage Analysis (Kilonewton per Square Meter)
- Length of Arc (Meter)
- m Stability Coefficient m in Soil Mechanics
- n Stability Coefficient n
- P Total Normal Force (Newton)
- r Radius of Soil Section (Meter)
- r_u Pore Pressure Ratio
- S Shear Force on Slice in Soil Mechanics (Newton)
- **u** Upward Force (Pascal)
- w Width of Soil Section (Meter)
- W Weight of Slice (Newton)
- X Horizontal Distance (Meter)
- X_(n+1) Vertical Shear Force at other Section (Newton)
- X_n Vertical Shear Force (Newton)
- Z Height of Slice (Meter)
- Y Unit Weight of Soil (Kilonewton per Cubic Meter)
- Δu Change in Pore Pressure (Pascal)
- Δσ₁ Change in Normal Stress (Pascal)
- ζ _{soil} Shear Strength (Megapascal)
- **0** Angle of Base (Degree)
- σ_{nm} Normal Stress in Mega Pascal (Megapascal)
- σ_{normal} Normal Stress in Pascal (Pascal)
- σ Effective Normal Stress (Pascal)

- ΣS Total Shear Force in Soil Mechanics (Newton)
- **ΣU** Total Pore Pressure (Newton)
- **ΣW** Total Weight of Slice in Soil Mechanics (Newton)
- **T** Shear Strength of Soil in Pascal (Pascal)
- φ' Effective Angle of Internal Friction (Degree)
- τ Shear Stress of Soil in Pascal (Pascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: atan, atan(Number)

 Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: tan, tan(Angle)

 The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Pressure in Pascal (Pa), Megapascal (MPa), Kilonewton per Square Meter (kN/m²)

Pressure Unit Conversion

- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion
- Measurement: Stress in Pascal (Pa)
 Stress Unit Conversion

Check other formula lists

- Bearing Capacity for Strip Footing for C-Φ
 Minimum Depth of Foundation by Soils Formulas
 Rankine's Analysis Formulas
- Bearing Capacity of Cohesive Soil Formulas
- Bearing Capacity of Non-cohesive Soil Formulas
- Bearing Capacity of Soils Formulas
- Bearing Capacity of Soils: Meyerhof's Analysis Formulas
- Foundation Stability Analysis
 Formulas
- Atterberg Limits Formulas
- Bearing Capacity of Soil: Terzaghi's Analysis Formulas
- Compaction of Soil Formulas
- Earth Moving Formulas
- Lateral Pressure for Cohesive and Non Cohesive Soil Formulas

- Rankine's Analysis Formulas L
 Pile Foundations Formulas L
- Scraper Production Formulas
- Seepage Analysis Formulas
- Slope Stability Analysis using Bishops Method Formulas
- Slope Stability Analysis using Culman's Method Formulas
- Soil Origin and Its Properties Formulas
- Specific Gravity of Soil Formulas
- Stability Analysis of Infinite Slopes in Prism Formulas
- Vibration Control in Blasting Formulas
- Void Ratio of Soil Sample Formulas
- Water Content of Soil and Related Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/8/2024 | 7:44:19 AM UTC

Please leave your feedback here...

