
calculatoratoz.com

Newtonian Flow Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Newtonian Flow Formulas

Newtonian Flow

1) Coefficient of Drag Equation with Angle of Attack
fx $\mathrm{C}_{\mathrm{D}}=2 \cdot(\sin (\alpha))^{3}$
Open Calculator
ex $0.013671=2 \cdot\left(\sin \left(10.94^{\circ}\right)\right)^{3}$
2) Coefficient of Drag Equation with Coefficient of Normal Force
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{D}}=\mu \cdot \sin (\alpha)$
Open Calculator
ex $0.085401=0.45 \cdot \sin \left(10.94^{\circ}\right)$
3) Coefficient of Lift Equation with Angle of Attack
$f_{x} C_{L}=2 \cdot(\sin (\alpha))^{2} \cdot \cos (\alpha)$
Open Calculator
ex $0.070724=2 \cdot\left(\sin \left(10.94^{\circ}\right)\right)^{2} \cdot \cos \left(10.94^{\circ}\right)$
4) Coefficient of Lift Equation with Coefficient of Normal Force
$f \mathrm{x} \mathrm{C}_{\mathrm{L}}=\mu \cdot \cos (\alpha)$
Open Calculator
ex $0.441822=0.45 \cdot \cos \left(10.94^{\circ}\right)$
5) Drag Force with Angle of Attack
$f x F_{D}=\frac{F_{L}}{\cot (\alpha)}$
Open Calculator
ex $77.41415 \mathrm{~N}=\frac{400.5 \mathrm{~N}}{\cot \left(10.94^{\circ}\right)}$
6) Exact Normal Shock Wave Maximum Coefficient of Pressure
$f x \mathrm{C}_{\mathrm{p}, \text { max }}=\frac{2}{\mathrm{Y} \cdot \mathrm{M}^{2}} \cdot\left(\frac{\mathrm{P}_{\mathrm{T}}}{\mathrm{P}}-1\right)$
Open Calculator
$\mathbf{e x} 2.910156=\frac{2}{1.6 \cdot(8)^{2}} \cdot\left(\frac{120000 \mathrm{~Pa}}{800 \mathrm{~Pa}}-1\right)$
7) Force Exerted on Surface given Static Pressure
$\mathbf{f x} \mathrm{F}=\mathrm{A} \cdot\left(\mathrm{p}-\mathrm{p}_{\text {static }}\right)$
Open Calculator
ex $2.52 \mathrm{~N}=2.1 \mathrm{~m}^{2} \cdot(251.2 \mathrm{~Pa}-250 \mathrm{~Pa})$
8) Lift Force with Angle of Attack
$f \times F_{L}=F_{D} \cdot \cot (\alpha)$
ex $413.8778 \mathrm{~N}=80 \mathrm{~N} \cdot \cot \left(10.94^{\circ}\right)$
9) Mass Flux Incident on Surface Area
$f \mathrm{x} G=\rho \cdot \mathrm{v} \cdot \mathrm{A} \cdot \sin (\theta)$
Open Calculator
ex $2.406764 \mathrm{~kg} / \mathrm{s} / \mathrm{m}^{2}=0.11 \mathrm{~kg} / \mathrm{m}^{3} \cdot 60 \mathrm{~m} / \mathrm{s} \cdot 2.1 \mathrm{~m}^{2} \cdot \sin \left(10^{\circ}\right)$
10) Maximum Pressure Coefficient
$f \mathrm{x} \mathrm{C}_{\mathrm{p}, \max }=\frac{\mathrm{P}_{\mathrm{T}}-\mathrm{P}}{0.5 \cdot \rho \cdot \mathrm{~V}_{\infty}^{2}}$
Open Calculator
ex $225.6635=\frac{120000 \mathrm{~Pa}-800 \mathrm{~Pa}}{0.5 \cdot 0.11 \mathrm{~kg} / \mathrm{m}^{3} \cdot(98 \mathrm{~m} / \mathrm{s})^{2}}$
11) Modified Newtonian Law
$f \mathbf{x} \mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}, \max } \cdot(\sin (\theta))^{2}$
Open Calculator
ex $0.018092=0.60 \cdot\left(\sin \left(10^{\circ}\right)\right)^{2}$
12) Pressure Coefficient for Slender 2D Bodies
$f \mathrm{x} \mathrm{C}_{\mathrm{p}}=2 \cdot\left((\theta)^{2}+\mathrm{k}_{\text {curvature }} \cdot \mathrm{y}\right)$
Open Calculator
ex $0.540923=2 \cdot\left(\left(10^{\circ}\right)^{2}+0.2 \mathrm{~m} \cdot 1.2 \mathrm{~m}\right)$

13) Pressure Coefficient for Slender Bodies of Revolution

$f \mathrm{x} \mathrm{C}_{\mathrm{p}}=2 \cdot(\theta)^{2}+\mathrm{k}_{\text {curvature }} \cdot \mathrm{y}$
ex $0.300923=2 \cdot\left(10^{\circ}\right)^{2}+0.2 \mathrm{~m} \cdot 1.2 \mathrm{~m}$
14) Time Rate of Change of Momentum of Mass Flux
$\mathrm{f}_{\mathrm{x}} \mathrm{F}=\rho_{\text {Fluid }} \cdot \mathrm{u}_{\text {Fluid }}^{2} \cdot \mathrm{~A} \cdot(\sin (\theta))^{2}$
Open Calculator
ex $1.353524 \mathrm{~N}=9.5 \mathrm{~kg} / \mathrm{m}^{3} \cdot(1.5 \mathrm{~m} / \mathrm{s})^{2} \cdot 2.1 \mathrm{~m}^{2} \cdot\left(\sin \left(10^{\circ}\right)\right)^{2}$

Variables Used

- A Area (Square Meter)
- C_{D} Drag Coefficient
- C_{L} Lift Coefficient
- \mathbf{C}_{p} Pressure Coefficient
- $\mathbf{C}_{\mathbf{p}, \text { max }}$ Maximum Pressure Coefficient
- F Force (Newton)
- $\mathbf{F}_{\mathbf{D}}$ Drag Force (Newton)
- F_{L} Lift Force (Newton)
- G Mass Flux(g) (Kilogram per Second per Square Meter)
- $\mathbf{k}_{\text {curvature }}$ Curvature of Surface (Meter)
- M Mach Number
- p Surface Pressure (Pascal)
- P Pressure (Pascal)
- Pstatic Static Pressure (Pascal)
- $\mathbf{P}_{\mathbf{T}}$ Total Pressure (Pascal)
- UFluid Fluid Velocity (Meter per Second)
- V Velocity (Meter per Second)
- \mathbf{V}_{∞} Freestream Velocity (Meter per Second)
- y Distance of Point from Centroidal Axis (Meter)
- Y Specific Heat Ratio
- $\boldsymbol{\alpha}$ Angle of Attack (Degree)
- $\boldsymbol{\theta}$ Angle of Inclination (Degree)
- μ Coefficient of Force
- ρ Density of Material (Kilogram per Cubic Meter)
- PFluid Density of Fluid (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: cot, $\cot ($ Angle)

Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.

- Function: sin, $\sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion \preceq

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Mass Flux in Kilogram per Second per Square Meter (kg/s/m²)
Mass Flux Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

Check other formula lists

- Approximate Methods of Hypersonic Inviscid Flowfields Formulas
- Boundary Layer Equations for Hypersonic Flow Formulas
- Computational Fluid Dynamic Solutions Formulas
- Elements of Kinetic Theory Formulas
- Hypersonic Equivalence Principle• and Blast-Wave Theory Formulas ${ }^{[3 / 5}$
- Hypersonic Flight Paths Velocity of Altitude Map Formulas
- Hypersonic Flow and Disturbances Formulas
- Hypersonic Inviscid Flow Formulas
- Hypersonic Viscous Interactions Formulas
- Newtonian Flow Formulas
- Oblique Shock Relation Formulas
Space-Marching Finite Difference Method: Additional Solutions of the Euler Equations Formulas
- Viscous Flow Fundamentals Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/11/2024 | 9:28:13 AM UTC
Please leave your feedback here...

